Spark2 oneHot编码--标准化--主成分--聚类
1.导入包
import org.apache.spark.sql.SparkSession import org.apache.spark.sql.Dataset import org.apache.spark.sql.Row import org.apache.spark.sql.DataFrame import org.apache.spark.sql.Column import org.apache.spark.sql.DataFrameReader import org.apache.spark.rdd.RDD import org.apache.spark.sql.catalyst.encoders.ExpressionEncoder import org.apache.spark.sql.Encoder import org.apache.spark.sql.functions._ import org.apache.spark.sql.DataFrameStatFunctions import org.apache.spark.ml.linalg.Vectors import org.apache.spark.ml.feature.StringIndexer import org.apache.spark.ml.feature.OneHotEncoder import org.apache.spark.ml.feature.VectorAssembler import org.apache.spark.ml.feature.MinMaxScaler import org.apache.spark.ml.feature.StandardScaler import org.apache.spark.ml.feature.PCA import org.apache.spark.ml.clustering.KMeans
2.导入数据
val spark = SparkSession.builder().appName("Spark SQL basic example").config("spark.some.config.option", "some-value").getOrCreate()
// For implicit conversions like converting RDDs to DataFrames
import spark.implicits._
val data: DataFrame = spark.read.format("csv").option("header", true).load("hdfs://ns1/datafile/wangxiao/Affairs.csv")
data: org.apache.spark.sql.DataFrame = [affairs: string, gender: string ... 7 more fields]
data.cache
res0: data.type = [affairs: string, gender: string ... 7 more fields]
data.limit(10).show()
+-------+------+---+------------+--------+-------------+---------+----------+------+
|affairs|gender|age|yearsmarried|children|religiousness|education|occupation|rating|
+-------+------+---+------------+--------+-------------+---------+----------+------+
| 0| male| 37| 10| no| 3| 18| 7| 4|
| 0|female| 27| 4| no| 4| 14| 6| 4|
| 0|female| 32| 15| yes| 1| 12| 1| 4|
| 0| male| 57| 15| yes| 5| 18| 6| 5|
| 0| male| 22| 0.75| no| 2| 17| 6| 3|
| 0|female| 32| 1.5| no| 2| 17| 5| 5|
| 0|female| 22| 0.75| no| 2| 12| 1| 3|
| 0| male| 57| 15| yes| 2| 14| 4| 4|
| 0|female| 32| 15| yes| 4| 16| 1| 2|
| 0| male| 22| 1.5| no| 4| 14| 4| 5|
+-------+------+---+------------+--------+-------------+---------+----------+------+
// 转换字符类型,将Double和String的字段分开放
val data1 = data.select(
| data("affairs").cast("Double"),
| data("age").cast("Double"),
| data("yearsmarried").cast("Double"),
| data("religiousness").cast("Double"),
| data("education").cast("Double"),
| data("occupation").cast("Double"),
| data("rating").cast("Double"),
| data("gender").cast("String"),
| data("children").cast("String"))
data1: org.apache.spark.sql.DataFrame = [affairs: double, age: double ... 7 more fields]
data1.printSchema()
root
|-- affairs: double (nullable = true)
|-- age: double (nullable = true)
|-- yearsmarried: double (nullable = true)
|-- religiousness: double (nullable = true)
|-- education: double (nullable = true)
|-- occupation: double (nullable = true)
|-- rating: double (nullable = true)
|-- gender: string (nullable = true)
|-- children: string (nullable = true)
data1.limit(10).show
+-------+----+------------+-------------+---------+----------+------+------+--------+
|affairs| age|yearsmarried|religiousness|education|occupation|rating|gender|children|
+-------+----+------------+-------------+---------+----------+------+------+--------+
| 0.0|37.0| 10.0| 3.0| 18.0| 7.0| 4.0| male| no|
| 0.0|27.0| 4.0| 4.0| 14.0| 6.0| 4.0|female| no|
| 0.0|32.0| 15.0| 1.0| 12.0| 1.0| 4.0|female| yes|
| 0.0|57.0| 15.0| 5.0| 18.0| 6.0| 5.0| male| yes|
| 0.0|22.0| 0.75| 2.0| 17.0| 6.0| 3.0| male| no|
| 0.0|32.0| 1.5| 2.0| 17.0| 5.0| 5.0|female| no|
| 0.0|22.0| 0.75| 2.0| 12.0| 1.0| 3.0|female| no|
| 0.0|57.0| 15.0| 2.0| 14.0| 4.0| 4.0| male| yes|
| 0.0|32.0| 15.0| 4.0| 16.0| 1.0| 2.0|female| yes|
| 0.0|22.0| 1.5| 4.0| 14.0| 4.0| 5.0| male| no|
+-------+----+------------+-------------+---------+----------+------+------+--------+
val dataDF = data1
dataDF: org.apache.spark.sql.DataFrame = [affairs: double, age: double ... 7 more fields]
dataDF.cache()
res4: dataDF.type = [affairs: double, age: double ... 7 more fields]
3.字符转换成数字索引,OneHot编码,注意setDropLast设置为false
字符转换成数字索引
val indexer = new StringIndexer().setInputCol("gender").setOutputCol("genderIndex").fit(dataDF)
indexer: org.apache.spark.ml.feature.StringIndexerModel = strIdx_27dba613193a
val indexed = indexer.transform(dataDF)
indexed: org.apache.spark.sql.DataFrame = [affairs: double, age: double ... 8 more fields]
// OneHot编码,注意setDropLast设置为false
val encoder = new OneHotEncoder().setInputCol("genderIndex").setOutputCol("genderVec").setDropLast(false)
encoder: org.apache.spark.ml.feature.OneHotEncoder = oneHot_155a53de3aef
val encoded = encoder.transform(indexed)
encoded: org.apache.spark.sql.DataFrame = [affairs: double, age: double ... 9 more fields]
encoded.show()
+-------+----+------------+-------------+---------+----------+------+------+--------+-----------+-------------+
|affairs| age|yearsmarried|religiousness|education|occupation|rating|gender|children|genderIndex| genderVec|
+-------+----+------------+-------------+---------+----------+------+------+--------+-----------+-------------+
| 0.0|37.0| 10.0| 3.0| 18.0| 7.0| 4.0| male| no| 1.0|(2,[1],[1.0])|
| 0.0|27.0| 4.0| 4.0| 14.0| 6.0| 4.0|female| no| 0.0|(2,[0],[1.0])|
| 0.0|32.0| 15.0| 1.0| 12.0| 1.0| 4.0|female| yes| 0.0|(2,[0],[1.0])|
| 0.0|57.0| 15.0| 5.0| 18.0| 6.0| 5.0| male| yes| 1.0|(2,[1],[1.0])|
| 0.0|22.0| 0.75| 2.0| 17.0| 6.0| 3.0| male| no| 1.0|(2,[1],[1.0])|
| 0.0|32.0| 1.5| 2.0| 17.0| 5.0| 5.0|female| no| 0.0|(2,[0],[1.0])|
| 0.0|22.0| 0.75| 2.0| 12.0| 1.0| 3.0|female| no| 0.0|(2,[0],[1.0])|
| 0.0|57.0| 15.0| 2.0| 14.0| 4.0| 4.0| male| yes| 1.0|(2,[1],[1.0])|
| 0.0|32.0| 15.0| 4.0| 16.0| 1.0| 2.0|female| yes| 0.0|(2,[0],[1.0])|
| 0.0|22.0| 1.5| 4.0| 14.0| 4.0| 5.0| male| no| 1.0|(2,[1],[1.0])|
| 0.0|37.0| 15.0| 2.0| 20.0| 7.0| 2.0| male| yes| 1.0|(2,[1],[1.0])|
| 0.0|27.0| 4.0| 4.0| 18.0| 6.0| 4.0| male| yes| 1.0|(2,[1],[1.0])|
| 0.0|47.0| 15.0| 5.0| 17.0| 6.0| 4.0| male| yes| 1.0|(2,[1],[1.0])|
| 0.0|22.0| 1.5| 2.0| 17.0| 5.0| 4.0|female| no| 0.0|(2,[0],[1.0])|
| 0.0|27.0| 4.0| 4.0| 14.0| 5.0| 4.0|female| no| 0.0|(2,[0],[1.0])|
| 0.0|37.0| 15.0| 1.0| 17.0| 5.0| 5.0|female| yes| 0.0|(2,[0],[1.0])|
| 0.0|37.0| 15.0| 2.0| 18.0| 4.0| 3.0|female| yes| 0.0|(2,[0],[1.0])|
| 0.0|22.0| 0.75| 3.0| 16.0| 5.0| 4.0|female| no| 0.0|(2,[0],[1.0])|
| 0.0|22.0| 1.5| 2.0| 16.0| 5.0| 5.0|female| no| 0.0|(2,[0],[1.0])|
| 0.0|27.0| 10.0| 2.0| 14.0| 1.0| 5.0|female| yes| 0.0|(2,[0],[1.0])|
+-------+----+------------+-------------+---------+----------+------+------+--------+-----------+-------------+
only showing top 20 rows
val indexer1 = new StringIndexer().setInputCol("children").setOutputCol("childrenIndex").fit(encoded)
indexer1: org.apache.spark.ml.feature.StringIndexerModel = strIdx_55db099c07b7
val indexed1 = indexer1.transform(encoded)
indexed1: org.apache.spark.sql.DataFrame = [affairs: double, age: double ... 10 more fields]
val encoder1 = new OneHotEncoder().setInputCol("childrenIndex").setOutputCol("childrenVec").setDropLast(false)
val encoded1 = encoder1.transform(indexed1)
encoded1: org.apache.spark.sql.DataFrame = [affairs: double, age: double ... 11 more fields]
encoded1.show()
+-------+----+------------+-------------+---------+----------+------+------+--------+-----------+-------------+-------------+-------------+
|affairs| age|yearsmarried|religiousness|education|occupation|rating|gender|children|genderIndex| genderVec|childrenIndex| childrenVec|
+-------+----+------------+-------------+---------+----------+------+------+--------+-----------+-------------+-------------+-------------+
| 0.0|37.0| 10.0| 3.0| 18.0| 7.0| 4.0| male| no| 1.0|(2,[1],[1.0])| 1.0|(2,[1],[1.0])|
| 0.0|27.0| 4.0| 4.0| 14.0| 6.0| 4.0|female| no| 0.0|(2,[0],[1.0])| 1.0|(2,[1],[1.0])|
| 0.0|32.0| 15.0| 1.0| 12.0| 1.0| 4.0|female| yes| 0.0|(2,[0],[1.0])| 0.0|(2,[0],[1.0])|
| 0.0|57.0| 15.0| 5.0| 18.0| 6.0| 5.0| male| yes| 1.0|(2,[1],[1.0])| 0.0|(2,[0],[1.0])|
| 0.0|22.0| 0.75| 2.0| 17.0| 6.0| 3.0| male| no| 1.0|(2,[1],[1.0])| 1.0|(2,[1],[1.0])|
| 0.0|32.0| 1.5| 2.0| 17.0| 5.0| 5.0|female| no| 0.0|(2,[0],[1.0])| 1.0|(2,[1],[1.0])|
| 0.0|22.0| 0.75| 2.0| 12.0| 1.0| 3.0|female| no| 0.0|(2,[0],[1.0])| 1.0|(2,[1],[1.0])|
| 0.0|57.0| 15.0| 2.0| 14.0| 4.0| 4.0| male| yes| 1.0|(2,[1],[1.0])| 0.0|(2,[0],[1.0])|
| 0.0|32.0| 15.0| 4.0| 16.0| 1.0| 2.0|female| yes| 0.0|(2,[0],[1.0])| 0.0|(2,[0],[1.0])|
| 0.0|22.0| 1.5| 4.0| 14.0| 4.0| 5.0| male| no| 1.0|(2,[1],[1.0])| 1.0|(2,[1],[1.0])|
| 0.0|37.0| 15.0| 2.0| 20.0| 7.0| 2.0| male| yes| 1.0|(2,[1],[1.0])| 0.0|(2,[0],[1.0])|
| 0.0|27.0| 4.0| 4.0| 18.0| 6.0| 4.0| male| yes| 1.0|(2,[1],[1.0])| 0.0|(2,[0],[1.0])|
| 0.0|47.0| 15.0| 5.0| 17.0| 6.0| 4.0| male| yes| 1.0|(2,[1],[1.0])| 0.0|(2,[0],[1.0])|
| 0.0|22.0| 1.5| 2.0| 17.0| 5.0| 4.0|female| no| 0.0|(2,[0],[1.0])| 1.0|(2,[1],[1.0])|
| 0.0|27.0| 4.0| 4.0| 14.0| 5.0| 4.0|female| no| 0.0|(2,[0],[1.0])| 1.0|(2,[1],[1.0])|
| 0.0|37.0| 15.0| 1.0| 17.0| 5.0| 5.0|female| yes| 0.0|(2,[0],[1.0])| 0.0|(2,[0],[1.0])|
| 0.0|37.0| 15.0| 2.0| 18.0| 4.0| 3.0|female| yes| 0.0|(2,[0],[1.0])| 0.0|(2,[0],[1.0])|
| 0.0|22.0| 0.75| 3.0| 16.0| 5.0| 4.0|female| no| 0.0|(2,[0],[1.0])| 1.0|(2,[1],[1.0])|
| 0.0|22.0| 1.5| 2.0| 16.0| 5.0| 5.0|female| no| 0.0|(2,[0],[1.0])| 1.0|(2,[1],[1.0])|
| 0.0|27.0| 10.0| 2.0| 14.0| 1.0| 5.0|female| yes| 0.0|(2,[0],[1.0])| 0.0|(2,[0],[1.0])|
+-------+----+------------+-------------+---------+----------+------+------+--------+-----------+-------------+-------------+-------------+
only showing top 20 rows
val encodeDF: DataFrame = encoded1
encodeDF: org.apache.spark.sql.DataFrame = [affairs: double, age: double ... 11 more fields]
encodeDF.show()
+-------+----+------------+-------------+---------+----------+------+------+--------+-----------+-------------+-------------+-------------+
|affairs| age|yearsmarried|religiousness|education|occupation|rating|gender|children|genderIndex| genderVec|childrenIndex| childrenVec|
+-------+----+------------+-------------+---------+----------+------+------+--------+-----------+-------------+-------------+-------------+
| 0.0|37.0| 10.0| 3.0| 18.0| 7.0| 4.0| male| no| 1.0|(2,[1],[1.0])| 1.0|(2,[1],[1.0])|
| 0.0|27.0| 4.0| 4.0| 14.0| 6.0| 4.0|female| no| 0.0|(2,[0],[1.0])| 1.0|(2,[1],[1.0])|
| 0.0|32.0| 15.0| 1.0| 12.0| 1.0| 4.0|female| yes| 0.0|(2,[0],[1.0])| 0.0|(2,[0],[1.0])|
| 0.0|57.0| 15.0| 5.0| 18.0| 6.0| 5.0| male| yes| 1.0|(2,[1],[1.0])| 0.0|(2,[0],[1.0])|
| 0.0|22.0| 0.75| 2.0| 17.0| 6.0| 3.0| male| no| 1.0|(2,[1],[1.0])| 1.0|(2,[1],[1.0])|
| 0.0|32.0| 1.5| 2.0| 17.0| 5.0| 5.0|female| no| 0.0|(2,[0],[1.0])| 1.0|(2,[1],[1.0])|
| 0.0|22.0| 0.75| 2.0| 12.0| 1.0| 3.0|female| no| 0.0|(2,[0],[1.0])| 1.0|(2,[1],[1.0])|
| 0.0|57.0| 15.0| 2.0| 14.0| 4.0| 4.0| male| yes| 1.0|(2,[1],[1.0])| 0.0|(2,[0],[1.0])|
| 0.0|32.0| 15.0| 4.0| 16.0| 1.0| 2.0|female| yes| 0.0|(2,[0],[1.0])| 0.0|(2,[0],[1.0])|
| 0.0|22.0| 1.5| 4.0| 14.0| 4.0| 5.0| male| no| 1.0|(2,[1],[1.0])| 1.0|(2,[1],[1.0])|
| 0.0|37.0| 15.0| 2.0| 20.0| 7.0| 2.0| male| yes| 1.0|(2,[1],[1.0])| 0.0|(2,[0],[1.0])|
| 0.0|27.0| 4.0| 4.0| 18.0| 6.0| 4.0| male| yes| 1.0|(2,[1],[1.0])| 0.0|(2,[0],[1.0])|
| 0.0|47.0| 15.0| 5.0| 17.0| 6.0| 4.0| male| yes| 1.0|(2,[1],[1.0])| 0.0|(2,[0],[1.0])|
| 0.0|22.0| 1.5| 2.0| 17.0| 5.0| 4.0|female| no| 0.0|(2,[0],[1.0])| 1.0|(2,[1],[1.0])|
| 0.0|27.0| 4.0| 4.0| 14.0| 5.0| 4.0|female| no| 0.0|(2,[0],[1.0])| 1.0|(2,[1],[1.0])|
| 0.0|37.0| 15.0| 1.0| 17.0| 5.0| 5.0|female| yes| 0.0|(2,[0],[1.0])| 0.0|(2,[0],[1.0])|
| 0.0|37.0| 15.0| 2.0| 18.0| 4.0| 3.0|female| yes| 0.0|(2,[0],[1.0])| 0.0|(2,[0],[1.0])|
| 0.0|22.0| 0.75| 3.0| 16.0| 5.0| 4.0|female| no| 0.0|(2,[0],[1.0])| 1.0|(2,[1],[1.0])|
| 0.0|22.0| 1.5| 2.0| 16.0| 5.0| 5.0|female| no| 0.0|(2,[0],[1.0])| 1.0|(2,[1],[1.0])|
| 0.0|27.0| 10.0| 2.0| 14.0| 1.0| 5.0|female| yes| 0.0|(2,[0],[1.0])| 0.0|(2,[0],[1.0])|
+-------+----+------------+-------------+---------+----------+------+------+--------+-----------+-------------+-------------+-------------+
only showing top 20 rows
encodeDF.printSchema()
root
|-- affairs: double (nullable = true)
|-- age: double (nullable = true)
|-- yearsmarried: double (nullable = true)
|-- religiousness: double (nullable = true)
|-- education: double (nullable = true)
|-- occupation: double (nullable = true)
|-- rating: double (nullable = true)
|-- gender: string (nullable = true)
|-- children: string (nullable = true)
|-- genderIndex: double (nullable = true)
|-- genderVec: vector (nullable = true)
|-- childrenIndex: double (nullable = true)
|-- childrenVec: vector (nullable = true)
4.将字段组合成向量feature
//将字段组合成向量feature
val assembler = new VectorAssembler().setInputCols(Array("affairs", "age", "yearsmarried", "religiousness", "education", "occupation", "rating", "genderVec", "childrenVec")).setOutputCol("features")
assembler: org.apache.spark.ml.feature.VectorAssembler = vecAssembler_df76d5d1e3f4
val vecDF: DataFrame = assembler.transform(encodeDF)
vecDF: org.apache.spark.sql.DataFrame = [affairs: double, age: double ... 12 more fields]
vecDF.select("features").show
+--------------------+
| features|
+--------------------+
|[0.0,37.0,10.0,3....|
|[0.0,27.0,4.0,4.0...|
|[0.0,32.0,15.0,1....|
|[0.0,57.0,15.0,5....|
|[0.0,22.0,0.75,2....|
|[0.0,32.0,1.5,2.0...|
|[0.0,22.0,0.75,2....|
|[0.0,57.0,15.0,2....|
|[0.0,32.0,15.0,4....|
|[0.0,22.0,1.5,4.0...|
|[0.0,37.0,15.0,2....|
|[0.0,27.0,4.0,4.0...|
|[0.0,47.0,15.0,5....|
|[0.0,22.0,1.5,2.0...|
|[0.0,27.0,4.0,4.0...|
|[0.0,37.0,15.0,1....|
|[0.0,37.0,15.0,2....|
|[0.0,22.0,0.75,3....|
|[0.0,22.0,1.5,2.0...|
|[0.0,27.0,10.0,2....|
+--------------------+
only showing top 20 rows
5.标准化--均值标准差
// 标准化--均值标准差
val scaler = new StandardScaler().setInputCol("features").setOutputCol("scaledFeatures").setWithStd(true).setWithMean(true)
scaler: org.apache.spark.ml.feature.StandardScaler = stdScal_43d3da1cd3bf
// Compute summary statistics by fitting the StandardScaler.
val scalerModel = scaler.fit(vecDF)
scalerModel: org.apache.spark.ml.feature.StandardScalerModel = stdScal_43d3da1cd3bf
// Normalize each feature to have unit standard deviation.
val scaledData: DataFrame = scalerModel.transform(vecDF)
scaledData: org.apache.spark.sql.DataFrame = [affairs: double, age: double ... 13 more fields]
scaledData.select("features", "scaledFeatures").show
+--------------------+--------------------+
| features| scaledFeatures|
+--------------------+--------------------+
|[0.0,37.0,10.0,3....|[-0.4413500298573...|
|[0.0,27.0,4.0,4.0...|[-0.4413500298573...|
|[0.0,32.0,15.0,1....|[-0.4413500298573...|
|[0.0,57.0,15.0,5....|[-0.4413500298573...|
|[0.0,22.0,0.75,2....|[-0.4413500298573...|
|[0.0,32.0,1.5,2.0...|[-0.4413500298573...|
|[0.0,22.0,0.75,2....|[-0.4413500298573...|
|[0.0,57.0,15.0,2....|[-0.4413500298573...|
|[0.0,32.0,15.0,4....|[-0.4413500298573...|
|[0.0,22.0,1.5,4.0...|[-0.4413500298573...|
|[0.0,37.0,15.0,2....|[-0.4413500298573...|
|[0.0,27.0,4.0,4.0...|[-0.4413500298573...|
|[0.0,47.0,15.0,5....|[-0.4413500298573...|
|[0.0,22.0,1.5,2.0...|[-0.4413500298573...|
|[0.0,27.0,4.0,4.0...|[-0.4413500298573...|
|[0.0,37.0,15.0,1....|[-0.4413500298573...|
|[0.0,37.0,15.0,2....|[-0.4413500298573...|
|[0.0,22.0,0.75,3....|[-0.4413500298573...|
|[0.0,22.0,1.5,2.0...|[-0.4413500298573...|
|[0.0,27.0,10.0,2....|[-0.4413500298573...|
+--------------------+--------------------+
only showing top 20 rows
6.主成分PCA
// 主成分
val pca = new PCA().setInputCol("scaledFeatures").setOutputCol("pcaFeatures").setK(3).fit(scaledData)
pca.explainedVariance.values //解释变量方差
res11: Array[Double] = Array(0.28779526464781313, 0.23798543640278289, 0.11742828783633019)
pca.pc //载荷(观测变量与主成分的相关系数)
res12: org.apache.spark.ml.linalg.DenseMatrix =
-0.12034310848156521 0.05153952289637974 0.6678769450480689
-0.42860623714516627 0.05417889891307473 -0.05592377098140197
-0.44404074412877986 0.1926596811059294 -0.017025575192258197
-0.12233707317255231 0.08053139375662526 -0.5093149296300096
-0.14664751606128462 -0.3872166556211308 -0.03406819489501708
-0.145543746024348 -0.43054860653839705 0.07841454709046872
0.17703994181974803 -0.12792784984216296 -0.5173229755329072
0.2459668445061567 0.4915809641798787 0.010477548320795945
-0.2459668445061567 -0.4915809641798787 -0.010477548320795945
-0.44420980045271047 0.240652448514566 -0.089356723885704
0.4442098004527103 -0.24065244851456588 0.08935672388570405
pca.extractParamMap()
res13: org.apache.spark.ml.param.ParamMap =
{
pca_40a453a54776-inputCol: scaledFeatures,
pca_40a453a54776-k: 3,
pca_40a453a54776-outputCol: pcaFeatures
}
pca.params
res14: Array[org.apache.spark.ml.param.Param[_]] = Array(pca_40a453a54776__inputCol, pca_40a453a54776__k, pca_40a453a54776__outputCol)
val pcaDF: DataFrame = pca.transform(scaledData)
pcaDF: org.apache.spark.sql.DataFrame = [affairs: double, age: double ... 14 more fields]
pcaDF.cache()
res15: pcaDF.type = [affairs: double, age: double ... 14 more fields]
pcaDF.printSchema()
root
|-- affairs: double (nullable = true)
|-- age: double (nullable = true)
|-- yearsmarried: double (nullable = true)
|-- religiousness: double (nullable = true)
|-- education: double (nullable = true)
|-- occupation: double (nullable = true)
|-- rating: double (nullable = true)
|-- gender: string (nullable = true)
|-- children: string (nullable = true)
|-- genderIndex: double (nullable = true)
|-- genderVec: vector (nullable = true)
|-- childrenIndex: double (nullable = true)
|-- childrenVec: vector (nullable = true)
|-- features: vector (nullable = true)
|-- scaledFeatures: vector (nullable = true)
|-- pcaFeatures: vector (nullable = true)
pcaDF.select("features", "scaledFeatures", "pcaFeatures").show
+--------------------+--------------------+--------------------+
| features| scaledFeatures| pcaFeatures|
+--------------------+--------------------+--------------------+
|[0.0,37.0,10.0,3....|[-0.4413500298573...|[0.27828160409293...|
|[0.0,27.0,4.0,4.0...|[-0.4413500298573...|[2.42147114101165...|
|[0.0,32.0,15.0,1....|[-0.4413500298573...|[0.18301418047489...|
|[0.0,57.0,15.0,5....|[-0.4413500298573...|[-2.9795960667914...|
|[0.0,22.0,0.75,2....|[-0.4413500298573...|[1.79299133565688...|
|[0.0,32.0,1.5,2.0...|[-0.4413500298573...|[2.65694237441759...|
|[0.0,22.0,0.75,2....|[-0.4413500298573...|[3.48234503794570...|
|[0.0,57.0,15.0,2....|[-0.4413500298573...|[-2.4215838062079...|
|[0.0,32.0,15.0,4....|[-0.4413500298573...|[-0.6964555195741...|
|[0.0,22.0,1.5,4.0...|[-0.4413500298573...|[2.18771069800414...|
|[0.0,37.0,15.0,2....|[-0.4413500298573...|[-2.4259075891377...|
|[0.0,27.0,4.0,4.0...|[-0.4413500298573...|[-0.7743038356008...|
|[0.0,47.0,15.0,5....|[-0.4413500298573...|[-2.6176149267534...|
|[0.0,22.0,1.5,2.0...|[-0.4413500298573...|[2.95788535193022...|
|[0.0,27.0,4.0,4.0...|[-0.4413500298573...|[2.50146472861263...|
|[0.0,37.0,15.0,1....|[-0.4413500298573...|[-0.5123817022008...|
|[0.0,37.0,15.0,2....|[-0.4413500298573...|[-0.9191740114044...|
|[0.0,22.0,0.75,3....|[-0.4413500298573...|[2.97391491782863...|
|[0.0,22.0,1.5,2.0...|[-0.4413500298573...|[3.17940505267806...|
|[0.0,27.0,10.0,2....|[-0.4413500298573...|[0.74585406839527...|
+--------------------+--------------------+--------------------+
only showing top 20 rows
7.聚类
// 注意最大迭代次數和轮廓系数
val KSSE = (2 to 20 by 1).toList.map { k =>
// 聚类
// Trains a k-means model.
val kmeans = new KMeans().setK(k).setSeed(1L).setFeaturesCol("scaledFeatures")
val model = kmeans.fit(scaledData)
// Evaluate clustering by computing Within Set Sum of Squared Errors.
val WSSSE = model.computeCost(scaledData)
// K,实际迭代次数,SSE,聚类类别编号,每类的记录数,类中心点
(k, model.getMaxIter, WSSSE, model.summary.cluster, model.summary.clusterSizes, model.clusterCenters)
}
// 根据SSE确定K值
val KSSEdf:DataFrame=KSSE.map{x=>(x._1,x._2,x._3,x._5)}.toDF("K", "MaxIter", "SSE", "clusterSizes")
KSSE.foreach(println)

浙公网安备 33010602011771号