cnn 卷积神经网络 人脸识别
卷积网络博大精深,不同的网络模型,跑出来的结果是不一样,在不知道使用什么网络的情况下跑自己的数据集时,我建议最好去参考基于cnn的手写数字识别网络构建,在其基础上进行改进,对于一般测试数据集有很大的帮助。
分享一个网络构架和一中训练方法:
# coding:utf-8
import os
import tensorflow as tf
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
# cnn模型高度抽象特征
def cnn_face_discern_model(X_,Y_):
weights = {
"wc1":tf.Variable(tf.random_normal([3,3,1,64],stddev=0.1)),
"wc2":tf.Variable(tf.random_normal([5,5,64,128],stddev=0.1)),
"wd3":tf.Variable(tf.random_normal([7*7*128,1024],stddev=0.1)),
"wd4": tf.Variable(tf.random_normal([1024, 12], stddev=0.1))
}
biases = {
"bc1":tf.Variable(tf.random_normal([64],stddev=0.1)),
"bc2":tf.Variable(tf.random_normal([128],stddev=0.1)),
"bd3": tf.Variable(tf.random_normal([1024],stddev=0.1)),
"bd4": tf.Variable(tf.random_normal([12],stddev=0.1))
}
x_input = tf.reshape(X_,shape=[-1,28,28,1])
# 第一层卷积层
_conv1 = tf.nn.conv2d(x_input,weights["wc1"],strides=[1,1,1,1],padding="SAME")
_conv1_ = tf.nn.relu(tf.nn.bias_add(_conv1,biases["bc1"]))
# 第一层池化层
_pool1 = tf.nn.max_pool(_conv1_,ksize=[1,2,2,1],strides=[1,2,2,1],padding="SAME")
# 第一层失活层
_pool1_dropout = tf.nn.dropout(_pool1,0.7)
# 第二层卷积层
_conv2 = tf.nn.conv2d(_pool1_dropout,weights["wc2"],strides=[1,1,1,1],padding="SAME")
_conv2_ = tf.nn.relu(tf.nn.bias_add(_conv2,biases["bc2"]))
# 第二层池化层
_pool2 = tf.nn.max_pool(_conv2_,ksize=[1,2,2,1],strides=[1,2,2,1],padding="SAME")
# 第二层失活层
_pool2_dropout = tf.nn.dropout(_pool2,0.7)
# 使用全连接层提取抽象特征
# 全连接层1
_densel = tf.reshape(_pool2_dropout,[-1,weights["wd3"].get_shape().as_list()[0]])
_y1 = tf.nn.relu(tf.add(tf.matmul(_densel,weights["wd3"]),biases["bd3"]))
_y2 = tf.nn.dropout(_y1,0.7)
# 全连接层2
out = tf.add(tf.matmul(_y2,weights["wd4"]),biases["bd4"])
# 损失函数 loss
loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(labels=Y_, logits=out)) # 计算交叉熵
# 优化目标 optimizing
optimizing = tf.train.AdamOptimizer(0.001).minimize(loss) # 使用adam优化器来以0.0001的学习率来进行微调
# 精确度 accuracy
correct_prediction = tf.equal(tf.argmax(Y_, 1), tf.argmax(out, 1)) # 判断预测标签和实际标签是否匹配
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
return {
"loss":loss,
"optimizing":optimizing,
"accuracy":accuracy,
"out":out
}
批量训练方法:
# 开始准备训练cnn
X = tf.placeholder(tf.float32,[None,28,28,1])
# 这个12属于人脸类别,一共有几个id
Y = tf.placeholder(tf.float32, [None,12])
# 实例化模型
cnn_model = cnn_face_discern_model(X,Y)
loss,optimizing,accuracy,out = cnn_model["loss"],cnn_model["optimizing"],cnn_model["accuracy"],cnn_model["out"]
# 启动训练模型
bsize = 960/60
with tf.Session() as sess:
# 实例所有参数
sess.run(tf.global_variables_initializer())
for epoch in range(100):
for i in range(15):
x_bsize,y_bsize = x_train[i*60:i*60+60,:,:,:],y_train[i*60:i*60+60,:]
sess.run(optimizing,feed_dict={X:x_bsize,Y:y_bsize})
if (epoch+1)%10==0:
los = sess.run(loss,feed_dict={X:x_test,Y:y_test})
acc = sess.run(accuracy,feed_dict={X:x_test,Y:y_test})
print("epoch:%s loss:%s accuracy:%s"%(epoch,los,acc))
score= sess.run(accuracy,feed_dict={X:x_test,Y:y_test})
y_pred = sess.run(out,feed_dict={X:x_test})
# 这个是类别,测试集预测出来的类别。
y_pred = np.argmax(y_pred,axis=1)
print("最后的精确度为:%s"%score)
自动化学习。

浙公网安备 33010602011771号