auto-keras 测试保存导入模型
# coding:utf-8
import time
import matplotlib.pyplot as plt
from autokeras import ImageClassifier
# 保存和导入模型方法
from autokeras.utils import pickle_to_file,pickle_from_file
from keras.engine.saving import load_model
from keras.utils import plot_model
from scipy.misc import imresize
import numpy as np
import pandas as pd
import random
import os
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
# 导入图片的函数
def read_img(path):
nameList = os.listdir(path)
n = len(nameList)
# indexImg,columnImg = plt.imread(path+'/'+nameList[0]).shape
x_train = np.zeros([n,28,28,1]);y_train=[]
for i in range(n):
x_train[i,:,:,0] = imresize(plt.imread(path+'/'+nameList[i]),[28,28])
y_train.append(np.int(nameList[i].split('.')[1]))
return x_train,y_train
x_train,y_train = read_img('./dataset')
y_train = pd.DataFrame(y_train)
n = len(y_train[y_train.iloc[:,0]==2])
x_train = np.array(x_train)
x_wzp = np.random.choice(y_train[y_train.iloc[:,0]==1].index.tolist(),n,replace=False)
x_train_w = x_train[x_wzp,:].copy()
x_train_l = x_train[y_train[y_train.iloc[:,0]==2].index.tolist()].copy()
x_train = np.concatenate([x_train_w,x_train_l],axis=0)
print(x_train.shape)
y_train = y_train.iloc[-208:,:].copy()
# 对两组数据进行洗牌
index = random.sample(range(len(y_train)),len(y_train))
index = np.array(index)
y_train = y_train.iloc[index,:]
# y_train.plot()
# plt.show()
x_train = x_train[index,:,:,:]
# x_train,x_test,y_train,y_test = train_test_split(x_train,y_train,test_size=0.2)
# print(x_train.shape,y_train.shape,x_test.shape,y_test.shape)
# y_test = y_test.values.reshape(-1)
y_train = y_train.values.reshape(-1)
# 数据测试
'''
print(y_train)
for i in range(5):
n = i*20
img = x_train[n,:,:,:].reshape((28,28))
print(y_train[n])
plt.figure()
plt.imshow(img,cmap='gray')
plt.xticks([])
plt.yticks([])
plt.show()
'''
if __name__=='__main__':
start = time.time()
# 模型构建
model = ImageClassifier(verbose=True)
# 搜索网络模型
model.fit(x_train,y_train,time_limit=1*60)
# 验证最优模型
model.final_fit(x_train,y_train,x_train,y_train,retrain=True)
# 给出评估结果
score = model.evaluate(x_train,y_train)
# 识别结果
y_predict = model.predict(x_train)
# y_pred = np.argmax(y_predict,axis=1)
# 精确度
accuracy = accuracy_score(y_train,y_predict)
# 打印出score与accuracy
print('score:',score,' accuracy:',accuracy)
print(y_predict,y_train)
model_dir = r'./trainer/new_auto_learn_Model.h5'
model_img = r'./trainer/imgModel_ST.png'
# 保存可视化模型
# model.load_searcher().load_best_model().produce_keras_model().save(model_dir)
pickle_to_file(model,model_dir)
# 加载模型
# automodel = load_model(model_dir)
# models = pickle_from_file(model_dir)
# 输出模型 structure 图
# plot_model(automodel, to_file=model_img)
end = time.time()
print('time:',end-start)
自动化学习。

浙公网安备 33010602011771号