文本轮廓检测
from openvino.inference_engine import IECore
import numpy as np
import time
import cv2 as cv
def text_detection_demo():
ie = IECore()
for device in ie.available_devices:
print(device)
model_xml = "/home/bhc/BHC/model/intel/text-detection-0004/FP16/text-detection-0004.xml"
model_bin = "/home/bhc/BHC/model/intel/text-detection-0004/FP16/text-detection-0004.bin"
net = ie.read_network(model=model_xml, weights=model_bin)
input_blob = next(iter(net.input_info))
text_it = iter(net.outputs)
out_blob1 = next(text_it) # model/link_logits_/add #输出(1, 16, 192, 320)
out_blob2 = next(text_it) # model/segm_logits/add #(1, 2, 192, 320)2:text\no-text
print(out_blob1, out_blob2)
n, c, h, w = net.input_info[input_blob].input_data.shape
print(n, c, h, w)
src = cv.imread("002.png")
image = cv.resize(src, (w, h))
image = image.transpose(2, 0, 1)
exec_net = ie.load_network(network=net, device_name="CPU")
res = exec_net.infer(inputs={input_blob:[image]})
res = res[out_blob2]
res = np.squeeze(res, 0)
res = res.transpose(1, 2, 0)
res = np.argmax(res, 2)
hh, ww = res.shape
mask = np.zeros((hh, ww), dtype=np.uint8) #灰度图像
mask[np.where(res > 0)] = 255 #text则白色
mask = cv.resize(mask, (src.shape[1], src.shape[0]))
ret, binary = cv.threshold(mask, 127, 255, cv.THRESH_BINARY) #阈值二值化,大于127则255
cv.imshow("mask", binary)
# result = cv.addWeighted(src, 0.5, mask, 0.5, 0)
contours, hiearchy = cv.findContours(binary, cv.RETR_EXTERNAL, cv.CHAIN_APPROX_SIMPLE) #轮廓检测
for cnt in range(len(contours)):
x, y, w, h = cv.boundingRect(contours[cnt]) #轮廓矩形
cv.rectangle(src, (x, y), (x+w, y+h), (244, 255, 0), 2, 8, 0)
cv.imshow("Text Detection", src)
cv.waitKey(0)
if __name__ == "__main__":
text_detection_demo()
天道酬勤 循序渐进 技压群雄
浙公网安备 33010602011771号