车辆检测
from openvino.inference_engine import IECore
import numpy as np
import time
import cv2 as cv
def ssd_video_demo():
ie = IECore()
for device in ie.available_devices:
print(device)
model_xml = "/home/bhc/BHC/model/intel/vehicle-detection-adas-0002/FP16/vehicle-detection-adas-0002.xml"
model_bin = "/home/bhc/BHC/model/intel/vehicle-detection-adas-0002/FP16/vehicle-detection-adas-0002.bin"
net = ie.read_network(model=model_xml, weights=model_bin)
input_blob = next(iter(net.input_info))
out_blob = next(iter(net.outputs))
n, c, h, w = net.input_info[input_blob].input_data.shape
print(n, c, h, w)
cap = cv.VideoCapture("2.mp4")
exec_net = ie.load_network(network=net, device_name="CPU")
ret, frame = cap.read()
cars = 0
while True:
ret, frame = cap.read()
if ret is not True:
break
mask = np.zeros_like(frame) #mask:相同shape和type的array,全部为0值
mh, mw, mc = mask.shape
cv.line(mask, (0, mh//2), (mw, mh//2), (255, 255, 255), 3, 8, 0) #mask:中间画线
image = cv.resize(frame, (w, h))
image = image.transpose(2, 0, 1)
inf_start = time.time()
res = exec_net.infer(inputs={input_blob:[image]})
inf_end = time.time() - inf_start
print("infer time(ms):%.3f"%(inf_end*1000))
ih, iw, ic = frame.shape
res = res[out_blob]
for obj in res[0][0]: #(1, 1, N, 7)
if obj[2] > 0.5: #[image_id, label, conf, x_min, y_min, x_max, y_max]
xmin = int(obj[3] * iw)
ymin = int(obj[4] * ih)
xmax = int(obj[5] * iw)
ymax = int(obj[6] * ih)
cv.rectangle(frame, (xmin, ymin), (xmax, ymax), (0, 255, 255), 2, 8)
cx = xmin + (xmax - xmin) // 2
cy = ymin + (ymax - ymin) // 2
cv.circle(mask, (cx, cy), 3, (255, 255, 255), 3, 8, 0) #mask:画圆圈
cv.putText(frame, str(obj[2]), (xmin, ymin), cv.FONT_HERSHEY_PLAIN, 1.0, (0, 0, 255), 1)
cv.putText(frame, "infer time(ms): %.3f, FPS: %.2f"%(inf_end*1000, 1/(inf_end+0.0001)), (10, 50),
cv.FONT_HERSHEY_SIMPLEX, 1.0, (255, 0, 255), 2, 8)
contours, hiearchy = cv.findContours(mask[:, :, 0], cv.RETR_EXTERNAL, cv.CHAIN_APPROX_SIMPLE) #mask:寻找轮廓
for cnt in range(len(contours)):
bx, by, bw, bh = cv.boundingRect(contours[cnt]) #mask:寻找覆盖轮廓的矩形
b_cx = bx + bw // 2
b_cy = by + bh // 2
dy = frame.shape[0] // 2 - b_cy #mask:寻找轮廓矩形(车)是否过了中间线
if 0 < dy < 15:
cars += 1
cv.imshow("Pedestrian Detection", frame)
cv.imshow("motion mask", mask)
print("number of cars: ", cars)
c = cv.waitKey(1)
if c == 27:
break
cv.waitKey(0)
cv.destroyAllWindows()
if __name__ == "__main__":
ssd_video_demo()
天道酬勤 循序渐进 技压群雄
浙公网安备 33010602011771号