行人检测
from openvino.inference_engine import IECore
import time
import cv2 as cv
def ssd_video_demo():
ie = IECore()
for device in ie.available_devices:
print(device)
model_xml = "/home/bhc/BHC/model/intel/pedestrian-and-vehicle-detector-adas-0001/FP16/pedestrian-and-vehicle-detector-adas-0001.xml"
model_bin = "/home/bhc/BHC/model/intel/pedestrian-and-vehicle-detector-adas-0001/FP16/pedestrian-and-vehicle-detector-adas-0001.bin"
net = ie.read_network(model=model_xml, weights=model_bin)
input_blob = next(iter(net.input_info))
out_blob = next(iter(net.outputs))
n, c, h, w = net.input_info[input_blob].input_data.shape
print(n, c, h, w)
cap = cv.VideoCapture("1.mp4")
exec_net = ie.load_network(network=net, device_name="CPU")
while True:
ret, frame = cap.read()
if ret is not True:
break
image = cv.resize(frame, (w, h))
image = image.transpose(2, 0, 1)
inf_start = time.time()
res = exec_net.infer(inputs={input_blob:[image]})
inf_end = time.time() - inf_start
print("infer time(ms):%.3f"%(inf_end*1000))
ih, iw, ic = frame.shape
res = res[out_blob] #输出结果(1, 1, N, 7,)
for obj in res[0][0]: # [image_id, label, conf, x_min, y_min, x_max, y_max]
if obj[2] > 0.5:
xmin = int(obj[3] * iw)
ymin = int(obj[4] * ih)
xmax = int(obj[5] * iw)
ymax = int(obj[6] * ih)
cv.rectangle(frame, (xmin, ymin), (xmax, ymax), (0, 255, 255), 2, 8)
cv.putText(frame, "infer time(ms): %.3f, FPS: %.2f"%(inf_end*1000, 1/inf_end), (10, 50),
cv.FONT_HERSHEY_SIMPLEX, 1.0, (255, 0, 255), 2, 8)
cv.imshow("Pedestrian Detection", frame)
c = cv.waitKey(1)
if c == 27:
break
cv.waitKey(0)
cv.destroyAllWindows()
if __name__ == "__main__":
ssd_video_demo()
天道酬勤 循序渐进 技压群雄
浙公网安备 33010602011771号