朴素贝叶斯分类
朴素贝叶斯分类
实验三 朴素贝叶斯算法
| 这个作业属于哪个课程 | [AHPU-机器学习](https://edu.cnblogs.com/campus/ahgc/machinelearning/homework/12085 |
|---|---|
| 这个作业要求在哪里 | 实验三 朴素贝叶斯算法 |
| 这个作业的目标 | 理解朴素贝叶斯算法,能实现朴素贝叶斯算法 |
| 学号 | 3170701219 |
目录
- 一、实验目的
- 二、实验内容
- 三、实验报告要求
- 四、实验过程及核心代码注释
- 五、实验结果
- 六、实验小结
一、实验目的
1.理解朴素贝叶斯算法原理,掌握朴素贝叶斯算法框架;
2.掌握常见的高斯模型,多项式模型和伯努利模型;
3.能根据不同的数据类型,选择不同的概率模型实现朴素贝叶斯算法;
4.针对特定应用场景及数据,能应用朴素贝叶斯解决实际问题。
二、实验内容
1.实现高斯朴素贝叶斯算法。
2.熟悉sklearn库中的朴素贝叶斯算法;
3.针对iris数据集,应用sklearn的朴素贝叶斯算法进行类别预测。
4.针对iris数据集,利用自编朴素贝叶斯算法进行类别预测。
三、实验报告要求
1.对照实验内容,撰写实验过程、算法及测试结果;
2.代码规范化:命名规则、注释;
3.分析核心算法的复杂度;
4.查阅文献,讨论各种朴素贝叶斯算法的应用场景;
5.讨论朴素贝叶斯算法的优缺点。
四、实验过程及核心代码注释
1.核心代码注释
GaussianNB 高斯朴素贝叶斯
特征的可能性被假设为高斯概率密度函数: 数学期望(mean):μ,方差:
class NaiveBayes:
def __init__(self):
self.model = None
# 数学期望
@staticmethod
def mean(X):
return sum(X) / float(len(X))
# 标准差(方差)
def stdev(self, X):
avg = self.mean(X)
return math.sqrt(sum([pow(x - avg, 2) for x in X]) / float(len(X)))
# 概率密度函数
def gaussian_probability(self, x, mean, stdev):
exponent = math.exp(-(math.pow(x - mean, 2) /
(2 * math.pow(stdev, 2))))
return (1 / (math.sqrt(2 * math.pi) * stdev)) * exponent
# 处理X_train
def summarize(self, train_data):
summaries = [(self.mean(i), self.stdev(i)) for i in zip(*train_data)]
return summaries
# 分类别求出数学期望和标准差
def fit(self, X, y):
labels = list(set(y))
data = {label: [] for label in labels}
for f, label in zip(X, y):
data[label].append(f)
self.model = {
label: self.summarize(value)
for label, value in data.items()
}
return 'gaussianNB train done!'
# 计算概率
def calculate_probabilities(self, input_data):
# summaries:{0.0: [(5.0, 0.37),(3.42, 0.40)], 1.0: [(5.8, 0.449),(2.7, 0.27)]}
# input_data:[1.1, 2.2]
probabilities = {}
for label, value in self.model.items():
probabilities[label] = 1
for i in range(len(value)):
mean, stdev = value[i]
probabilities[label] *= self.gaussian_probability(
input_data[i], mean, stdev)
return probabilities
# 类别
def predict(self, X_test):
# {0.0: 2.9680340789325763e-27, 1.0: 3.5749783019849535e-26}
label = sorted(
self.calculate_probabilities(X_test).items(),
key=lambda x: x[-1])[-1][0]
return label
def score(self, X_test, y_test):
right = 0
for X, y in zip(X_test, y_test):
label = self.predict(X)
if label == y:
right += 1
return right / float(len(X_test))
2.伯努利模型和多项式模型
from sklearn.naive_bayes import BernoulliNB, MultinomialNB model = NaiveBayes() model.fit(X_train, y_train) print(model.predict([4.4, 3.2, 1.3, 0.2])) model.score(X_test, y_test) from sklearn.naive_bayes import GaussianNB clf = GaussianNB() clf.fit(X_train, y_train) clf.score(X_test, y_test) clf.predict([[4.4, 3.2, 1.3, 0.2]])
五、实验结果






浙公网安备 33010602011771号