一.实验目的
1.理解感知器算法原理,能实现感知器算法;
2.掌握机器学习算法的度量指标;
3.掌握最小二乘法进行参数估计基本原理;
4.针对特定应用场景及数据,能构建感知器模型并进行预测。
二.实验内容
1.安装Pycharm,注册学生版。
2.安装常见的机器学习库,如Scipy、Numpy、Pandas、Matplotlib,sklearn等。
3.编程实现感知器算法。
4.熟悉iris数据集,并能使用感知器算法对该数据集构建模型并应用
三.实验过程及结果
实验代码及注释
1、
import pandas as pd
import numpy as np
from sklearn.datasets import load_iris
import matplotlib.pyplot as plt
%matplotlib inline
2、
%# load data
iris = load_iris()
df = pd.DataFrame(iris.data, columns=iris.feature_names)
3、
df.columns = ['sepal length', 'sepal width', 'petal length', 'petal width', 'label']
4、
plt.scatter(df[:50]['sepal length'], df[:50]['sepal width'], label='0')//绘制散点图
plt.scatter(df[50:100]['sepal length'], df[50:100]['sepal width'], label='1')
plt.xlabel('sepal length')//给图加上图例
plt.ylabel('sepal width')
plt.legend()
5、
data = np.array(df.iloc[:100, [0, 1, -1]])//按行索引,取出第0,1,-1列
6、
X, y = data[:,:-1], data[:,-1]
7、
y = np.array([1 if i == 1 else -1 for i in y])//将两个类别设重新设置为+1 —1
8、
%# 数据线性可分,二分类数据
%# 此处为一元一次线性方程
class Model:
def init(self):
9、
perceptron = Model()
perceptron.fit(X, y)
10、绘制模型图像,定义一些基本的信息
x_points = np.linspace(4, 7,10)//x轴的划分
y_ = -(perceptron.w[0]*x_points + perceptron.b)/perceptron.w[1]
plt.plot(x_points, y_)//绘制模型图像(数据、颜色、图例等信息)
plt.plot(data[:50, 0], data[:50, 1], 'bo', color='blue', label='0')
plt.plot(data[50:100, 0], data[50:100, 1], 'bo', color='orange', label='1')
plt.xlabel('sepal length')
plt.ylabel('sepal width')
plt.legend()
11、
from sklearn.linear_model import Perceptron
12、
clf = Perceptron(fit_intercept=False, max_iter=1000, shuffle=False)
clf.fit(X, y)
13、
%
14、
%
15、
x_ponits = np.arange(4, 8)//确定x轴和y轴的值
y_ = -(clf.coef_[0][0]*x_ponits + clf.intercept_)/clf.coef_[0][1]
plt.plot(x_ponits, y_)//确定拟合的图像的具体信息(数据点,线,大小,粗细颜色等内容)
plt.plot(data[:50, 0], data[:50, 1], 'bo', color='blue', label='0')
plt.plot(data[50:100, 0], data[50:100, 1], 'bo', color='orange', label='1')
plt.xlabel('sepal length')
plt.ylabel('sepal width')
plt.legend()
实验结果截图
![]()
![]()
![]()
![]()
![]()
![]()
![]()