并发编程(进程与线程)
面试必考
线程与进程
2.1 进程与线程
进程
- 程序由指令和数据组成,但是这些指令要运行,数据要读写,就必须将指令加载到cpu,数据加载至内存。在指令运行过程中还需要用到磁盘,网络等设备,进程就是用来加载指令管理内存管理IO的
- 当一个指令被运行,从磁盘加载这个程序的代码到内存,这时候就开启了一个进程
- 进程就可以视为程序的一个实例,大部分程序都可以运行多个实例进程(例如记事本,浏览器等),部分只可以运行一个实例进程(例如360安全卫士,网易云音乐)
线程
- 一个进程之内可以分为一到多个线程。
- 一个线程就是一个指令流,将指令流中的一条条指令以一定的顺序交给 CPU 执行
- Java 中,线程作为最小调度单位,进程作为资源分配的最小单位。 在 windows 中进程是不活动的,只是作为线程的容器
二者对比
进程基本上相互独立的,而线程存在于进程内,是进程的一个子集
进程拥有共享的资源,如内存空间等,供其内部的线程共享
进程间通信较为复杂
- 同一台计算机的进程通信称为 IPC(Inter-process communication)
- 不同计算机之间的进程通信,需要通过网络,并遵守共同的协议,例如 HTTP
线程通信相对简单,因为它们共享进程内的内存,一个例子是多个线程可以访问同一个共享变量
线程更轻量,线程上下文切换成本一般上要比进程上下文切换低
上下文切换
上下文切换(有时也称做进程切换或任务切换)是指 CPU 从一个进程(或线程)切换到另一个进程(或线程)。上下文是指某一时间点 CPU 寄存器和程序计数器的内容。
CPU通过为每个线程分配CPU时间片来实现多线程机制。CPU通过时间片分配算法来循环执行任务,当前任务执行一个时间片后会切换到下一个任务。
但是,在切换前会保存上一个任务的状态,以便下次切换回这个任务时,可以再加载这个任务的状态。所以任务从保存到再加载的过程就是一次上下文切换。
2.2 并行与并发
并发
在单核 cpu 下,线程实际还是串行执行的。操作系统中有一个组件叫做任务调度器,将 cpu 的时间片(windows 下时间片最小约为 15 毫秒)分给不同的程序使用,只是由于 cpu 在线程间(时间片很短)的切换非常快,人类感觉是同时运行的 。一般会将这种线程轮流使用 CPU 的做法称为并发(concurrent)
微观串行,宏观并行


并行
多核 cpu下,每个核(core) 都可以调度运行线程,这时候线程可以是并行的。
真正在同时运行

二者对比
引用 Rob Pike 的一段描述:并发(concurrent)是同一时间应对(dealing with)多件事情的能力,并行(parallel)是同一时间动手做(doing)多件事情的能力
- 家庭主妇做饭、打扫卫生、给孩子喂奶,她一个人轮流交替做这多件事,这时就是并发
- 雇了3个保姆,一个专做饭、一个专打扫卫生、一个专喂奶,互不干扰,这时是并行
- 家庭主妇雇了个保姆,她们一起这些事,这时既有并发,也有并行(这时会产生竞争,例如锅只有一口,一 个人用锅时,另一个人就得等待)
应用
同步和异步的概念
以调用方的角度讲,如果需要等待结果返回才能继续运行的话就是同步,如果不需要等待就是异步
1) 设计
多线程可以使方法的执行变成异步的,比如说读取磁盘文件时,假设读取操作花费了5秒,如果没有线程的调度机制,这么cpu只能等5秒,啥都不能做。
2) 结论
- 比如在项目中,视频文件需要转换格式等操作比较费时,这时开一个新线程处理视频转换,避免阻塞主线程
- tomcat 的异步 servlet 也是类似的目的,让用户线程处理耗时较长的操作,避免阻塞 tomcat 的工作线程
- ui 程序中,开线程进行其他操作,避免阻塞 ui 线程



3java线程
3.1 创建和运行线程
方法一,直接使用 Thread
//创建线程对象
Thread t =new Thread(){
public void run(){
//要执行的任务
}
};
//启动线程
t.start();
例如:
// 构造方法的参数是给线程指定名字,,推荐给线程起个名字
Thread t1 = new Thread("t1") {
@Override
// run 方法内实现了要执行的任务
public void run() {
log.debug("hello");
}
};
t1.start();

方法二,使用 Runnable 配合 Thread
把【线程】和【任务】(要执行的代码)分开,Thread 代表线程,Runnable 可运行的任务(线程要执行的代码)Test2.java
// 创建任务对象
Runnable task2 = new Runnable() {
@Override
public void run() {
log.debug("hello");
}
};
// 参数1 是任务对象; 参数2 是线程名字,推荐给线程起个名字
Thread t2 = new Thread(task2, "t2");
t2.start();


1、传入target,调用init方法

2、又传入了一个重载

3、赋值给了thread的一个成员变量

4、thread类下自己的方法被用到了,如果存在target就执行该方法

小结
方法1 是把线程和任务合并在了一起,方法2 是把线程和任务分开了
用 Runnable 更容易与线程池等高级 API 配合
用 Runnable 让任务类脱离了 Thread 继承体系,更灵活。
通过查看源码可以发现,方法二其实到底还是通过方法一执行的!
方法三,FutureTask 配合 Thread
FutureTask 能够接收 Callable 类型的参数,用来处理有返回结果的情况 Test3.java
Callable有返回值
public static void main(String[] args) throws ExecutionException, InterruptedException {
// 实现多线程的第三种方法可以返回数据
FutureTask futureTask = new FutureTask<>(new Callable<Integer>() {
@Override
public Integer call() throws Exception {
log.debug("多线程任务");
Thread.sleep(100);
return 100;
}
});
// 参数1 是任务对象; 参数2 是线程名字,推荐
new Thread(futureTask,"线程名字").start();
// 主线程阻塞,同步等待 task 执行完毕的结果
log.debug("{}",futureTask.get());
}
Future就是对于具体的Runnable或者Callable任务的执行结果进行取消、查询是否完成、获取结果。必要时可以通过get方法获取执行结果,该方法会阻塞直到任务返回结果。
public interface Future<V> {
boolean cancel(boolean mayInterruptIfRunning);
boolean isCancelled();
boolean isDone();
V get() throws InterruptedException, ExecutionException;
V get(long timeout, TimeUnit unit)
throws InterruptedException, ExecutionException, TimeoutException;
}
Future提供了三种功能:
-
判断任务是否完成;
-
能够中断任务;
-
能够获取任务执行结果。
3.2 观察多个线程同时运行
主要是理解
交替执行 谁先谁后,不由我们控制
3.3查看进程线程的方法




3.4 原理之线程运行
栈与栈帧
Java Virtual Machine Stacks (Java 虚拟机栈)
我们都知道 JVM 中由堆、栈、方法区所组成,其中栈内存是给谁用的呢?其实就是线程,每个线程启动后,虚拟机就会为其分配一块栈内存。
- 每个栈由多个栈帧(Frame)组成,对应着每次方法调用时所占用的内存
- 每个线程只能有一个活动栈帧,对应着当前正在执行的那个方法

多线程,会有多个 栈内存,有自己独立的栈帧

线程上下文切换(Thread Context Switch)
因为以下一些原因导致 cpu 不再执行当前的线程,转而执行另一个线程的代码
- 线程的 cpu 时间片用完(每个线程轮流执行,看前面并行的概念)
- 垃圾回收
- 有更高优先级的线程需要运行
- 线程自己调用了
sleep、yield、wait、join、park、synchronized、lock等方法
当 Context Switch 发生时,需要由操作系统保存当前线程的状态,并恢复另一个线程的状态,Java 中对应的概念 就是程序计数器(Program Counter Register),它的作用是记住下一条 jvm 指令的执行地址,是线程私有的
- 状态包括程序计数器、虚拟机栈中每个栈帧的信息,如局部变量、操作数栈、返回地址等
- Context Switch 频繁发生会影响性能
3.5 Thread的常见方法


3.6 start 与 run
调用start
public static void main(String[] args) {
Thread thread = new Thread(){
@Override
public void run(){
log.debug("我是一个新建的线程正在运行中");
FileReader.read(fileName);
}
};
thread.setName("新建线程");
thread.start();
log.debug("主线程");
}
输出:程序在 t1 线程运行, run()方法里面内容的调用是异步的 Test4.java
11:59:40.711 [main] DEBUG com.concurrent.test.Test4 - 主线程 11:59:40.711 [新建线程] DEBUG com.concurrent.test.Test4 - 我是一个新建的线程正在运行中 11:59:40.732 [新建线程] DEBUG com.concurrent.test.FileReader - read [test] start ... 11:59:40.735 [新建线程] DEBUG com.concurrent.test.FileReader - read [test] end ... cost: 3 ms
调用run
将上面代码的thread.start();改为 thread.run();输出结果如下:程序仍在 main 线程运行, run()方法里面内容的调用还是同步的
12:03:46.711 [main] DEBUG com.concurrent.test.Test4 - 我是一个新建的线程正在运行中 12:03:46.727 [main] DEBUG com.concurrent.test.FileReader - read [test] start ... 12:03:46.729 [main] DEBUG com.concurrent.test.FileReader - read [test] end ... cost: 2 ms 12:03:46.730 [main] DEBUG com.concurrent.test.Test4 - 主线程
小结
直接调用 run() 是在主线程中执行了 run(),没有启动新的线程 使用 start() 是启动新的线程,通过新的线程间接执行 run()方法 中的代码
必须用start,并且不能被start调用

3.7 sleep 与 yield
sleep
- 调用 sleep 会让当前线程从 Running 进入 Timed Waiting 状态(阻塞)
- 其它线程可以使用 interrupt 方法打断正在睡眠的线程,那么被打断的线程这时就会抛出
InterruptedException异常【注意:这里打断的是正在休眠的线程,而不是其它状态的线程】 - 睡眠结束后的线程未必会立刻得到执行(需要分配到cpu时间片)
- 建议用 TimeUnit 的
sleep()代替 Thread 的sleep()来获得更好的可读性
thread.sleep()在哪个线程中被调用,就是让所在的线程延时一段时间


yield
- 调用 yield 会让当前线程从 Running 进入 Runnable 就绪状态,然后调度执行其它线程
- 具体的实现依赖于操作系统的任务调度器(就是可能没有其它的线程正在执行,虽然调用了yield方法,但是也没有用)
小结
yield使cpu调用其它线程,但是cpu可能会再分配时间片给该线程;而sleep需要等过了休眠时间之后才有可能被分配cpu时间片
线程优先级
- 线程优先级会提示(hint)调度器优先调度该线程,但它仅仅是一个提示,调度器可以忽略它
- 如果 cpu 比较忙,那么优先级高的线程会获得更多的时间片,但 cpu 闲时,优先级几乎没作用


3.8 join 方法详解
为什么需要 join
在主线程中调用t1.join,则主线程会等待t1线程执行完之后再继续执行 Test10.java
private static void test1() throws InterruptedException {
log.debug("开始");
Thread t1 = new Thread(() -> {
log.debug("开始");
sleep(1);
log.debug("结束");
r = 10;
},"t1");
t1.start();
t1.join();
log.debug("结果为:{}", r);
log.debug("结束");
}


没等够时间

等够时间

3.9 interrupt 方法详解
打断 sleep,wait,join 的线程
这几个方法都会让线程进入阻塞状态
打断 sleep 的线程, 会清空打断状态,以 sleep 为例

打断正常运行的线程
打断正常运行的线程, 线程并不会暂停,只是调用方法Thread.currentThread().isInterrupted();的返回值为true,可以判断Thread.currentThread().isInterrupted();的值来手动停止线程
public static void main(String[] args) throws InterruptedException {
Thread t1 = new Thread(() -> {
while(true) {
boolean interrupted = Thread.currentThread().isInterrupted();
if(interrupted) {
log.debug("被打断了, 退出循环");
break;
}
}
}, "t1");
t1.start();
Thread.sleep(1000);
log.debug("interrupt");
t1.interrupt();
}

终止模式之两阶段终止模式
Two Phase Termination,就是考虑在一个线程T1中如何优雅地终止另一个线程T2?这里的优雅指的是给T2一个料理后事的机会(如释放锁)。

如下所示:那么线程的isInterrupted()方法可以取得线程的打断标记,如果线程在睡眠sleep期间被打断,打断标记是不会变的,为false,但是sleep期间被打断会抛出异常,我们据此手动设置打断标记为true;如果是在程序正常运行期间被打断的,那么打断标记就被自动设置为true。处理好这两种情况那我们就可以放心地来料理后事啦!


sleep过程中被打断,会设置打断标记为false,所以要重新设置打断标记为true

3.3.6 sleep,yiled,wait,join 对比
关于join的原理和这几个方法的对比:看这里
补充:
- sleep,join,yield,interrupted是Thread类中的方法
- wait/notify是object中的方法
sleep 不释放锁、释放cpu join 释放锁、抢占cpu yiled 不释放锁、释放cpu wait 释放锁、释放cpu

![]()
打断 park 线程
打断 park 线程, 不会清空打断状态 isInterrupted()
打断标记为真时,park会失效,会停不下来要用

会把打断标记设为假

3.10 不推荐的方法
还有一些不推荐使用的方法,这些方法已过时,容易破坏同步代码块,造成线程死锁

3.11 主线程与守护线程
默认情况下,Java 进程需要等待所有线程都运行结束,才会结束。有一种特殊的线程叫做守护线程,只要其它非守 护线程运行结束了,即使守护线程的代码没有执行完,也会强制结束。
主线程结束了。守护线程也会结束


3.12 五种状态
五种状态的划分主要是从操作系统的层面进行划分的

- 初始状态,仅仅是在语言层面上创建了线程对象,即
Thead thread = new Thead();,还未与操作系统线程关联 - 可运行状态,也称就绪状态,指该线程已经被创建,与操作系统相关联,等待cpu给它分配时间片就可运行
- 运行状态,指线程获取了CPU时间片,正在运行
- 当CPU时间片用完,线程会转换至【可运行状态】,等待 CPU再次分配时间片,会导致我们前面讲到的上下文切换
- 阻塞状态
- 如果调用了阻塞API,如BIO读写文件,那么线程实际上不会用到CPU,不会分配CPU时间片,会导致上下文切换,进入【阻塞状态】
- 等待BIO操作完毕,会由操作系统唤醒阻塞的线程,转换至【可运行状态】
- 与【可运行状态】的区别是,只要操作系统一直不唤醒线程,调度器就一直不会考虑调度它们,CPU就一直不会分配时间片
- 终止状态,表示线程已经执行完毕,生命周期已经结束,不会再转换为其它状态
3.6 线程状态之六种状态
这是从 Java API 层面来描述的,我们主要研究的就是这种。状态转换详情图:地址 根据 Thread.State 枚举,分为六种状态 Test12.java

- NEW 跟五种状态里的初始状态是一个意思
- RUNNABLE 是当调用了
start()方法之后的状态,注意,Java API 层面的RUNNABLE状态涵盖了操作系统层面的【可运行状态】、【运行状态】和【io阻塞状态】(由于 BIO 导致的线程阻塞,在 Java 里无法区分,仍然认为是可运行) BLOCKED,WAITING,TIMED_WAITING都是 Java API 层面对【阻塞状态】的细分,后面会在状态转换一节 详述- TERMINATED 当线程代码运行结束

浙公网安备 33010602011771号