# python s12 day2

### 入门知识拾遗

http://www.cnblogs.com/wupeiqi/articles/4906230.html

### 基本数据类型

class int(object):
"""
int(x=0) -> int or long
int(x, base=10) -> int or long

Convert a number or string to an integer, or return 0 if no arguments
are given.  If x is floating point, the conversion truncates towards zero.
If x is outside the integer range, the function returns a long instead.

If x is not a number or if base is given, then x must be a string or
Unicode object representing an integer literal in the given base.  The
literal can be preceded by '+' or '-' and be surrounded by whitespace.
The base defaults to 10.  Valid bases are 0 and 2-36.  Base 0 means to
interpret the base from the string as an integer literal.
>>> int('0b100', base=0)
"""
def bit_length(self):
""" 返回表示该数字的时占用的最少位数 """
"""
int.bit_length() -> int

Number of bits necessary to represent self in binary.
>>> bin(37)
'0b100101'
>>> (37).bit_length()
"""
return 0

def conjugate(self, *args, **kwargs): # real signature unknown
""" 返回该复数的共轭复数 """
""" Returns self, the complex conjugate of any int. """
pass

def __abs__(self):
""" 返回绝对值 """
""" x.__abs__() <==> abs(x) """
pass

pass

def __and__(self, y):
""" x.__and__(y) <==> x&y """
pass

def __cmp__(self, y):
""" 比较两个数大小 """
""" x.__cmp__(y) <==> cmp(x,y) """
pass

def __coerce__(self, y):
""" 强制生成一个元组 """
""" x.__coerce__(y) <==> coerce(x, y) """
pass

def __divmod__(self, y):
""" 相除，得到商和余数组成的元组 """
""" x.__divmod__(y) <==> divmod(x, y) """
pass

def __div__(self, y):
""" x.__div__(y) <==> x/y """
pass

def __float__(self):
""" 转换为浮点类型 """
""" x.__float__() <==> float(x) """
pass

def __floordiv__(self, y):
""" x.__floordiv__(y) <==> x//y """
pass

def __format__(self, *args, **kwargs): # real signature unknown
pass

def __getattribute__(self, name):
""" x.__getattribute__('name') <==> x.name """
pass

def __getnewargs__(self, *args, **kwargs): # real signature unknown
""" 内部调用 __new__方法或创建对象时传入参数使用 """
pass

def __hash__(self):
"""如果对象object为哈希表类型，返回对象object的哈希值。哈希值为整数。在字典查找中，哈希值用于快速比较字典的键。两个数值如果相等，则哈希值也相等。"""
""" x.__hash__() <==> hash(x) """
pass

def __hex__(self):
""" 返回当前数的 十六进制 表示 """
""" x.__hex__() <==> hex(x) """
pass

def __index__(self):
""" 用于切片，数字无意义 """
""" x[y:z] <==> x[y.__index__():z.__index__()] """
pass

def __init__(self, x, base=10): # known special case of int.__init__
""" 构造方法，执行 x = 123 或 x = int(10) 时，自动调用，暂时忽略 """
"""
int(x=0) -> int or long
int(x, base=10) -> int or long

Convert a number or string to an integer, or return 0 if no arguments
are given.  If x is floating point, the conversion truncates towards zero.
If x is outside the integer range, the function returns a long instead.

If x is not a number or if base is given, then x must be a string or
Unicode object representing an integer literal in the given base.  The
literal can be preceded by '+' or '-' and be surrounded by whitespace.
The base defaults to 10.  Valid bases are 0 and 2-36.  Base 0 means to
interpret the base from the string as an integer literal.
>>> int('0b100', base=0)
# (copied from class doc)
"""
pass

def __int__(self):
""" 转换为整数 """
""" x.__int__() <==> int(x) """
pass

def __invert__(self):
""" x.__invert__() <==> ~x """
pass

def __long__(self):
""" 转换为长整数 """
""" x.__long__() <==> long(x) """
pass

def __lshift__(self, y):
""" x.__lshift__(y) <==> x<<y """
pass

def __mod__(self, y):
""" x.__mod__(y) <==> x%y """
pass

def __mul__(self, y):
""" x.__mul__(y) <==> x*y """
pass

def __neg__(self):
""" x.__neg__() <==> -x """
pass

@staticmethod # known case of __new__
def __new__(S, *more):
""" T.__new__(S, ...) -> a new object with type S, a subtype of T """
pass

def __nonzero__(self):
""" x.__nonzero__() <==> x != 0 """
pass

def __oct__(self):
""" 返回改值的 八进制 表示 """
""" x.__oct__() <==> oct(x) """
pass

def __or__(self, y):
""" x.__or__(y) <==> x|y """
pass

def __pos__(self):
""" x.__pos__() <==> +x """
pass

def __pow__(self, y, z=None):
""" 幂，次方 """
""" x.__pow__(y[, z]) <==> pow(x, y[, z]) """
pass

pass

def __rand__(self, y):
""" x.__rand__(y) <==> y&x """
pass

def __rdivmod__(self, y):
""" x.__rdivmod__(y) <==> divmod(y, x) """
pass

def __rdiv__(self, y):
""" x.__rdiv__(y) <==> y/x """
pass

def __repr__(self):
"""转化为解释器可读取的形式 """
""" x.__repr__() <==> repr(x) """
pass

def __str__(self):
"""转换为人阅读的形式，如果没有适于人阅读的解释形式的话，则返回解释器课阅读的形式"""
""" x.__str__() <==> str(x) """
pass

def __rfloordiv__(self, y):
""" x.__rfloordiv__(y) <==> y//x """
pass

def __rlshift__(self, y):
""" x.__rlshift__(y) <==> y<<x """
pass

def __rmod__(self, y):
""" x.__rmod__(y) <==> y%x """
pass

def __rmul__(self, y):
""" x.__rmul__(y) <==> y*x """
pass

def __ror__(self, y):
""" x.__ror__(y) <==> y|x """
pass

def __rpow__(self, x, z=None):
""" y.__rpow__(x[, z]) <==> pow(x, y[, z]) """
pass

def __rrshift__(self, y):
""" x.__rrshift__(y) <==> y>>x """
pass

def __rshift__(self, y):
""" x.__rshift__(y) <==> x>>y """
pass

def __rsub__(self, y):
""" x.__rsub__(y) <==> y-x """
pass

def __rtruediv__(self, y):
""" x.__rtruediv__(y) <==> y/x """
pass

def __rxor__(self, y):
""" x.__rxor__(y) <==> y^x """
pass

def __sub__(self, y):
""" x.__sub__(y) <==> x-y """
pass

def __truediv__(self, y):
""" x.__truediv__(y) <==> x/y """
pass

def __trunc__(self, *args, **kwargs):
""" 返回数值被截取为整形的值，在整形中无意义 """
pass

def __xor__(self, y):
""" x.__xor__(y) <==> x^y """
pass

denominator = property(lambda self: object(), lambda self, v: None, lambda self: None)  # default
""" 分母 = 1 """
"""the denominator of a rational number in lowest terms"""

imag = property(lambda self: object(), lambda self, v: None, lambda self: None)  # default
""" 虚数，无意义 """
"""the imaginary part of a complex number"""

numerator = property(lambda self: object(), lambda self, v: None, lambda self: None)  # default
""" 分子 = 数字大小 """
"""the numerator of a rational number in lowest terms"""

real = property(lambda self: object(), lambda self, v: None, lambda self: None)  # default
""" 实属，无意义 """
"""the real part of a complex number"""
int

class long(object):
"""
long(x=0) -> long
long(x, base=10) -> long

Convert a number or string to a long integer, or return 0L if no arguments
are given.  If x is floating point, the conversion truncates towards zero.

If x is not a number or if base is given, then x must be a string or
Unicode object representing an integer literal in the given base.  The
literal can be preceded by '+' or '-' and be surrounded by whitespace.
The base defaults to 10.  Valid bases are 0 and 2-36.  Base 0 means to
interpret the base from the string as an integer literal.
>>> int('0b100', base=0)
4L
"""
def bit_length(self): # real signature unknown; restored from __doc__
"""
long.bit_length() -> int or long

Number of bits necessary to represent self in binary.
>>> bin(37L)
'0b100101'
>>> (37L).bit_length()
"""
return 0

def conjugate(self, *args, **kwargs): # real signature unknown
""" Returns self, the complex conjugate of any long. """
pass

def __abs__(self): # real signature unknown; restored from __doc__
""" x.__abs__() <==> abs(x) """
pass

def __add__(self, y): # real signature unknown; restored from __doc__
pass

def __and__(self, y): # real signature unknown; restored from __doc__
""" x.__and__(y) <==> x&y """
pass

def __cmp__(self, y): # real signature unknown; restored from __doc__
""" x.__cmp__(y) <==> cmp(x,y) """
pass

def __coerce__(self, y): # real signature unknown; restored from __doc__
""" x.__coerce__(y) <==> coerce(x, y) """
pass

def __divmod__(self, y): # real signature unknown; restored from __doc__
""" x.__divmod__(y) <==> divmod(x, y) """
pass

def __div__(self, y): # real signature unknown; restored from __doc__
""" x.__div__(y) <==> x/y """
pass

def __float__(self): # real signature unknown; restored from __doc__
""" x.__float__() <==> float(x) """
pass

def __floordiv__(self, y): # real signature unknown; restored from __doc__
""" x.__floordiv__(y) <==> x//y """
pass

def __format__(self, *args, **kwargs): # real signature unknown
pass

def __getattribute__(self, name): # real signature unknown; restored from __doc__
""" x.__getattribute__('name') <==> x.name """
pass

def __getnewargs__(self, *args, **kwargs): # real signature unknown
pass

def __hash__(self): # real signature unknown; restored from __doc__
""" x.__hash__() <==> hash(x) """
pass

def __hex__(self): # real signature unknown; restored from __doc__
""" x.__hex__() <==> hex(x) """
pass

def __index__(self): # real signature unknown; restored from __doc__
""" x[y:z] <==> x[y.__index__():z.__index__()] """
pass

def __init__(self, x=0): # real signature unknown; restored from __doc__
pass

def __int__(self): # real signature unknown; restored from __doc__
""" x.__int__() <==> int(x) """
pass

def __invert__(self): # real signature unknown; restored from __doc__
""" x.__invert__() <==> ~x """
pass

def __long__(self): # real signature unknown; restored from __doc__
""" x.__long__() <==> long(x) """
pass

def __lshift__(self, y): # real signature unknown; restored from __doc__
""" x.__lshift__(y) <==> x<<y """
pass

def __mod__(self, y): # real signature unknown; restored from __doc__
""" x.__mod__(y) <==> x%y """
pass

def __mul__(self, y): # real signature unknown; restored from __doc__
""" x.__mul__(y) <==> x*y """
pass

def __neg__(self): # real signature unknown; restored from __doc__
""" x.__neg__() <==> -x """
pass

@staticmethod # known case of __new__
def __new__(S, *more): # real signature unknown; restored from __doc__
""" T.__new__(S, ...) -> a new object with type S, a subtype of T """
pass

def __nonzero__(self): # real signature unknown; restored from __doc__
""" x.__nonzero__() <==> x != 0 """
pass

def __oct__(self): # real signature unknown; restored from __doc__
""" x.__oct__() <==> oct(x) """
pass

def __or__(self, y): # real signature unknown; restored from __doc__
""" x.__or__(y) <==> x|y """
pass

def __pos__(self): # real signature unknown; restored from __doc__
""" x.__pos__() <==> +x """
pass

def __pow__(self, y, z=None): # real signature unknown; restored from __doc__
""" x.__pow__(y[, z]) <==> pow(x, y[, z]) """
pass

def __radd__(self, y): # real signature unknown; restored from __doc__
pass

def __rand__(self, y): # real signature unknown; restored from __doc__
""" x.__rand__(y) <==> y&x """
pass

def __rdivmod__(self, y): # real signature unknown; restored from __doc__
""" x.__rdivmod__(y) <==> divmod(y, x) """
pass

def __rdiv__(self, y): # real signature unknown; restored from __doc__
""" x.__rdiv__(y) <==> y/x """
pass

def __repr__(self): # real signature unknown; restored from __doc__
""" x.__repr__() <==> repr(x) """
pass

def __rfloordiv__(self, y): # real signature unknown; restored from __doc__
""" x.__rfloordiv__(y) <==> y//x """
pass

def __rlshift__(self, y): # real signature unknown; restored from __doc__
""" x.__rlshift__(y) <==> y<<x """
pass

def __rmod__(self, y): # real signature unknown; restored from __doc__
""" x.__rmod__(y) <==> y%x """
pass

def __rmul__(self, y): # real signature unknown; restored from __doc__
""" x.__rmul__(y) <==> y*x """
pass

def __ror__(self, y): # real signature unknown; restored from __doc__
""" x.__ror__(y) <==> y|x """
pass

def __rpow__(self, x, z=None): # real signature unknown; restored from __doc__
""" y.__rpow__(x[, z]) <==> pow(x, y[, z]) """
pass

def __rrshift__(self, y): # real signature unknown; restored from __doc__
""" x.__rrshift__(y) <==> y>>x """
pass

def __rshift__(self, y): # real signature unknown; restored from __doc__
""" x.__rshift__(y) <==> x>>y """
pass

def __rsub__(self, y): # real signature unknown; restored from __doc__
""" x.__rsub__(y) <==> y-x """
pass

def __rtruediv__(self, y): # real signature unknown; restored from __doc__
""" x.__rtruediv__(y) <==> y/x """
pass

def __rxor__(self, y): # real signature unknown; restored from __doc__
""" x.__rxor__(y) <==> y^x """
pass

def __sizeof__(self, *args, **kwargs): # real signature unknown
""" Returns size in memory, in bytes """
pass

def __str__(self): # real signature unknown; restored from __doc__
""" x.__str__() <==> str(x) """
pass

def __sub__(self, y): # real signature unknown; restored from __doc__
""" x.__sub__(y) <==> x-y """
pass

def __truediv__(self, y): # real signature unknown; restored from __doc__
""" x.__truediv__(y) <==> x/y """
pass

def __trunc__(self, *args, **kwargs): # real signature unknown
""" Truncating an Integral returns itself. """
pass

def __xor__(self, y): # real signature unknown; restored from __doc__
""" x.__xor__(y) <==> x^y """
pass

denominator = property(lambda self: object(), lambda self, v: None, lambda self: None)  # default
"""the denominator of a rational number in lowest terms"""

imag = property(lambda self: object(), lambda self, v: None, lambda self: None)  # default
"""the imaginary part of a complex number"""

numerator = property(lambda self: object(), lambda self, v: None, lambda self: None)  # default
"""the numerator of a rational number in lowest terms"""

real = property(lambda self: object(), lambda self, v: None, lambda self: None)  # default
"""the real part of a complex number"""
long

class float(object):
"""
float(x) -> floating point number

Convert a string or number to a floating point number, if possible.
"""
def as_integer_ratio(self):
""" 获取改值的最简比 """
"""
float.as_integer_ratio() -> (int, int)

Return a pair of integers, whose ratio is exactly equal to the original
float and with a positive denominator.
Raise OverflowError on infinities and a ValueError on NaNs.

>>> (10.0).as_integer_ratio()
(10, 1)
>>> (0.0).as_integer_ratio()
(0, 1)
>>> (-.25).as_integer_ratio()
(-1, 4)
"""
pass

def conjugate(self, *args, **kwargs): # real signature unknown
""" Return self, the complex conjugate of any float. """
pass

def fromhex(self, string):
""" 将十六进制字符串转换成浮点型 """
"""
float.fromhex(string) -> float

Create a floating-point number from a hexadecimal string.
>>> float.fromhex('0x1.ffffp10')
2047.984375
>>> float.fromhex('-0x1p-1074')
-4.9406564584124654e-324
"""
return 0.0

def hex(self):
""" 返回当前值的 16 进制表示 """
"""
float.hex() -> string

Return a hexadecimal representation of a floating-point number.
>>> (-0.1).hex()
'-0x1.999999999999ap-4'
>>> 3.14159.hex()
'0x1.921f9f01b866ep+1'
"""
return ""

def is_integer(self, *args, **kwargs): # real signature unknown
""" Return True if the float is an integer. """
pass

def __abs__(self):
""" x.__abs__() <==> abs(x) """
pass

pass

def __coerce__(self, y):
""" x.__coerce__(y) <==> coerce(x, y) """
pass

def __divmod__(self, y):
""" x.__divmod__(y) <==> divmod(x, y) """
pass

def __div__(self, y):
""" x.__div__(y) <==> x/y """
pass

def __eq__(self, y):
""" x.__eq__(y) <==> x==y """
pass

def __float__(self):
""" x.__float__() <==> float(x) """
pass

def __floordiv__(self, y):
""" x.__floordiv__(y) <==> x//y """
pass

def __format__(self, format_spec):
"""
float.__format__(format_spec) -> string

Formats the float according to format_spec.
"""
return ""

def __getattribute__(self, name):
""" x.__getattribute__('name') <==> x.name """
pass

def __getformat__(self, typestr):
"""
float.__getformat__(typestr) -> string

You probably don't want to use this function.  It exists mainly to be
used in Python's test suite.

typestr must be 'double' or 'float'.  This function returns whichever of
'unknown', 'IEEE, big-endian' or 'IEEE, little-endian' best describes the
format of floating point numbers used by the C type named by typestr.
"""
return ""

def __getnewargs__(self, *args, **kwargs): # real signature unknown
pass

def __ge__(self, y):
""" x.__ge__(y) <==> x>=y """
pass

def __gt__(self, y):
""" x.__gt__(y) <==> x>y """
pass

def __hash__(self):
""" x.__hash__() <==> hash(x) """
pass

def __init__(self, x):
pass

def __int__(self):
""" x.__int__() <==> int(x) """
pass

def __le__(self, y):
""" x.__le__(y) <==> x<=y """
pass

def __long__(self):
""" x.__long__() <==> long(x) """
pass

def __lt__(self, y):
""" x.__lt__(y) <==> x<y """
pass

def __mod__(self, y):
""" x.__mod__(y) <==> x%y """
pass

def __mul__(self, y):
""" x.__mul__(y) <==> x*y """
pass

def __neg__(self):
""" x.__neg__() <==> -x """
pass

@staticmethod # known case of __new__
def __new__(S, *more):
""" T.__new__(S, ...) -> a new object with type S, a subtype of T """
pass

def __ne__(self, y):
""" x.__ne__(y) <==> x!=y """
pass

def __nonzero__(self):
""" x.__nonzero__() <==> x != 0 """
pass

def __pos__(self):
""" x.__pos__() <==> +x """
pass

def __pow__(self, y, z=None):
""" x.__pow__(y[, z]) <==> pow(x, y[, z]) """
pass

pass

def __rdivmod__(self, y):
""" x.__rdivmod__(y) <==> divmod(y, x) """
pass

def __rdiv__(self, y):
""" x.__rdiv__(y) <==> y/x """
pass

def __repr__(self):
""" x.__repr__() <==> repr(x) """
pass

def __rfloordiv__(self, y):
""" x.__rfloordiv__(y) <==> y//x """
pass

def __rmod__(self, y):
""" x.__rmod__(y) <==> y%x """
pass

def __rmul__(self, y):
""" x.__rmul__(y) <==> y*x """
pass

def __rpow__(self, x, z=None):
""" y.__rpow__(x[, z]) <==> pow(x, y[, z]) """
pass

def __rsub__(self, y):
""" x.__rsub__(y) <==> y-x """
pass

def __rtruediv__(self, y):
""" x.__rtruediv__(y) <==> y/x """
pass

def __setformat__(self, typestr, fmt):
"""
float.__setformat__(typestr, fmt) -> None

You probably don't want to use this function.  It exists mainly to be
used in Python's test suite.

typestr must be 'double' or 'float'.  fmt must be one of 'unknown',
'IEEE, big-endian' or 'IEEE, little-endian', and in addition can only be
one of the latter two if it appears to match the underlying C reality.

Override the automatic determination of C-level floating point type.
This affects how floats are converted to and from binary strings.
"""
pass

def __str__(self):
""" x.__str__() <==> str(x) """
pass

def __sub__(self, y):
""" x.__sub__(y) <==> x-y """
pass

def __truediv__(self, y):
""" x.__truediv__(y) <==> x/y """
pass

def __trunc__(self, *args, **kwargs): # real signature unknown
""" Return the Integral closest to x between 0 and x. """
pass

imag = property(lambda self: object(), lambda self, v: None, lambda self: None)  # default
"""the imaginary part of a complex number"""

real = property(lambda self: object(), lambda self, v: None, lambda self: None)  # default
"""the real part of a complex number"""
float

class str(basestring):
"""
str(object='') -> string

Return a nice string representation of the object.
If the argument is a string, the return value is the same object.
"""
def capitalize(self):
""" 首字母变大写 """
"""
S.capitalize() -> string

Return a copy of the string S with only its first character
capitalized.
"""
return ""

def center(self, width, fillchar=None):
""" 内容居中，width：总长度；fillchar：空白处填充内容，默认无 """
"""
S.center(width[, fillchar]) -> string

Return S centered in a string of length width. Padding is
done using the specified fill character (default is a space)
"""
return ""

def count(self, sub, start=None, end=None):
""" 子序列个数 """
"""
S.count(sub[, start[, end]]) -> int

Return the number of non-overlapping occurrences of substring sub in
string S[start:end].  Optional arguments start and end are interpreted
as in slice notation.
"""
return 0

def decode(self, encoding=None, errors=None):
""" 解码 """
"""
S.decode([encoding[,errors]]) -> object

Decodes S using the codec registered for encoding. encoding defaults
to the default encoding. errors may be given to set a different error
handling scheme. Default is 'strict' meaning that encoding errors raise
a UnicodeDecodeError. Other possible values are 'ignore' and 'replace'
as well as any other name registered with codecs.register_error that is
able to handle UnicodeDecodeErrors.
"""
return object()

def encode(self, encoding=None, errors=None):
""" 编码，针对unicode """
"""
S.encode([encoding[,errors]]) -> object

Encodes S using the codec registered for encoding. encoding defaults
to the default encoding. errors may be given to set a different error
handling scheme. Default is 'strict' meaning that encoding errors raise
a UnicodeEncodeError. Other possible values are 'ignore', 'replace' and
'xmlcharrefreplace' as well as any other name registered with
codecs.register_error that is able to handle UnicodeEncodeErrors.
"""
return object()

def endswith(self, suffix, start=None, end=None):
""" 是否以 xxx 结束 """
"""
S.endswith(suffix[, start[, end]]) -> bool

Return True if S ends with the specified suffix, False otherwise.
With optional start, test S beginning at that position.
With optional end, stop comparing S at that position.
suffix can also be a tuple of strings to try.
"""
return False

def expandtabs(self, tabsize=None):
""" 将tab转换成空格，默认一个tab转换成8个空格 """
"""
S.expandtabs([tabsize]) -> string

Return a copy of S where all tab characters are expanded using spaces.
If tabsize is not given, a tab size of 8 characters is assumed.
"""
return ""

def find(self, sub, start=None, end=None):
""" 寻找子序列位置，如果没找到，返回 -1 """
"""
S.find(sub [,start [,end]]) -> int

Return the lowest index in S where substring sub is found,
such that sub is contained within S[start:end].  Optional
arguments start and end are interpreted as in slice notation.

Return -1 on failure.
"""
return 0

def format(*args, **kwargs): # known special case of str.format
""" 字符串格式化，动态参数，将函数式编程时细说 """
"""
S.format(*args, **kwargs) -> string

Return a formatted version of S, using substitutions from args and kwargs.
The substitutions are identified by braces ('{' and '}').
"""
pass

def index(self, sub, start=None, end=None):
""" 子序列位置，如果没找到，报错 """
S.index(sub [,start [,end]]) -> int

"""
return 0

def isalnum(self):
""" 是否是字母和数字 """
"""
S.isalnum() -> bool

Return True if all characters in S are alphanumeric
and there is at least one character in S, False otherwise.
"""
return False

def isalpha(self):
""" 是否是字母 """
"""
S.isalpha() -> bool

Return True if all characters in S are alphabetic
and there is at least one character in S, False otherwise.
"""
return False

def isdigit(self):
""" 是否是数字 """
"""
S.isdigit() -> bool

Return True if all characters in S are digits
and there is at least one character in S, False otherwise.
"""
return False

def islower(self):
""" 是否小写 """
"""
S.islower() -> bool

Return True if all cased characters in S are lowercase and there is
at least one cased character in S, False otherwise.
"""
return False

def isspace(self):
"""
S.isspace() -> bool

Return True if all characters in S are whitespace
and there is at least one character in S, False otherwise.
"""
return False

def istitle(self):
"""
S.istitle() -> bool

Return True if S is a titlecased string and there is at least one
character in S, i.e. uppercase characters may only follow uncased
characters and lowercase characters only cased ones. Return False
otherwise.
"""
return False

def isupper(self):
"""
S.isupper() -> bool

Return True if all cased characters in S are uppercase and there is
at least one cased character in S, False otherwise.
"""
return False

def join(self, iterable):
""" 连接 """
"""
S.join(iterable) -> string

Return a string which is the concatenation of the strings in the
iterable.  The separator between elements is S.
"""
return ""

def ljust(self, width, fillchar=None):
""" 内容左对齐，右侧填充 """
"""
S.ljust(width[, fillchar]) -> string

Return S left-justified in a string of length width. Padding is
done using the specified fill character (default is a space).
"""
return ""

def lower(self):
""" 变小写 """
"""
S.lower() -> string

Return a copy of the string S converted to lowercase.
"""
return ""

def lstrip(self, chars=None):
""" 移除左侧空白 """
"""
S.lstrip([chars]) -> string or unicode

Return a copy of the string S with leading whitespace removed.
If chars is given and not None, remove characters in chars instead.
If chars is unicode, S will be converted to unicode before stripping
"""
return ""

def partition(self, sep):
""" 分割，前，中，后三部分 """
"""

Search for the separator sep in S, and return the part before it,
the separator itself, and the part after it.  If the separator is not
found, return S and two empty strings.
"""
pass

def replace(self, old, new, count=None):
""" 替换 """
"""
S.replace(old, new[, count]) -> string

Return a copy of string S with all occurrences of substring
old replaced by new.  If the optional argument count is
given, only the first count occurrences are replaced.
"""
return ""

def rfind(self, sub, start=None, end=None):
"""
S.rfind(sub [,start [,end]]) -> int

Return the highest index in S where substring sub is found,
such that sub is contained within S[start:end].  Optional
arguments start and end are interpreted as in slice notation.

Return -1 on failure.
"""
return 0

def rindex(self, sub, start=None, end=None):
"""
S.rindex(sub [,start [,end]]) -> int

"""
return 0

def rjust(self, width, fillchar=None):
"""
S.rjust(width[, fillchar]) -> string

Return S right-justified in a string of length width. Padding is
done using the specified fill character (default is a space)
"""
return ""

def rpartition(self, sep):
"""

Search for the separator sep in S, starting at the end of S, and return
the part before it, the separator itself, and the part after it.  If the
"""
pass

def rsplit(self, sep=None, maxsplit=None):
"""
S.rsplit([sep [,maxsplit]]) -> list of strings

Return a list of the words in the string S, using sep as the
delimiter string, starting at the end of the string and working
to the front.  If maxsplit is given, at most maxsplit splits are
done. If sep is not specified or is None, any whitespace string
is a separator.
"""
return []

def rstrip(self, chars=None):
"""
S.rstrip([chars]) -> string or unicode

Return a copy of the string S with trailing whitespace removed.
If chars is given and not None, remove characters in chars instead.
If chars is unicode, S will be converted to unicode before stripping
"""
return ""

def split(self, sep=None, maxsplit=None):
""" 分割， maxsplit最多分割几次 """
"""
S.split([sep [,maxsplit]]) -> list of strings

Return a list of the words in the string S, using sep as the
delimiter string.  If maxsplit is given, at most maxsplit
splits are done. If sep is not specified or is None, any
whitespace string is a separator and empty strings are removed
from the result.
"""
return []

def splitlines(self, keepends=False):
""" 根据换行分割 """
"""
S.splitlines(keepends=False) -> list of strings

Return a list of the lines in S, breaking at line boundaries.
Line breaks are not included in the resulting list unless keepends
is given and true.
"""
return []

def startswith(self, prefix, start=None, end=None):
""" 是否起始 """
"""
S.startswith(prefix[, start[, end]]) -> bool

Return True if S starts with the specified prefix, False otherwise.
With optional start, test S beginning at that position.
With optional end, stop comparing S at that position.
prefix can also be a tuple of strings to try.
"""
return False

def strip(self, chars=None):
""" 移除两段空白 """
"""
S.strip([chars]) -> string or unicode

Return a copy of the string S with leading and trailing
whitespace removed.
If chars is given and not None, remove characters in chars instead.
If chars is unicode, S will be converted to unicode before stripping
"""
return ""

def swapcase(self):
""" 大写变小写，小写变大写 """
"""
S.swapcase() -> string

Return a copy of the string S with uppercase characters
converted to lowercase and vice versa.
"""
return ""

def title(self):
"""
S.title() -> string

characters, all remaining cased characters have lowercase.
"""
return ""

def translate(self, table, deletechars=None):
"""
转换，需要先做一个对应表，最后一个表示删除字符集合
intab = "aeiou"
outtab = "12345"
trantab = maketrans(intab, outtab)
str = "this is string example....wow!!!"
print str.translate(trantab, 'xm')
"""

"""
S.translate(table [,deletechars]) -> string

Return a copy of the string S, where all characters occurring
in the optional argument deletechars are removed, and the
remaining characters have been mapped through the given
translation table, which must be a string of length 256 or None.
If the table argument is None, no translation is applied and
the operation simply removes the characters in deletechars.
"""
return ""

def upper(self):
"""
S.upper() -> string

Return a copy of the string S converted to uppercase.
"""
return ""

def zfill(self, width):
"""方法返回指定长度的字符串，原字符串右对齐，前面填充0。"""
"""
S.zfill(width) -> string

Pad a numeric string S with zeros on the left, to fill a field
of the specified width.  The string S is never truncated.
"""
return ""

def _formatter_field_name_split(self, *args, **kwargs): # real signature unknown
pass

def _formatter_parser(self, *args, **kwargs): # real signature unknown
pass

pass

def __contains__(self, y):
""" x.__contains__(y) <==> y in x """
pass

def __eq__(self, y):
""" x.__eq__(y) <==> x==y """
pass

def __format__(self, format_spec):
"""
S.__format__(format_spec) -> string

Return a formatted version of S as described by format_spec.
"""
return ""

def __getattribute__(self, name):
""" x.__getattribute__('name') <==> x.name """
pass

def __getitem__(self, y):
""" x.__getitem__(y) <==> x[y] """
pass

def __getnewargs__(self, *args, **kwargs): # real signature unknown
pass

def __getslice__(self, i, j):
"""
x.__getslice__(i, j) <==> x[i:j]

Use of negative indices is not supported.
"""
pass

def __ge__(self, y):
""" x.__ge__(y) <==> x>=y """
pass

def __gt__(self, y):
""" x.__gt__(y) <==> x>y """
pass

def __hash__(self):
""" x.__hash__() <==> hash(x) """
pass

def __init__(self, string=''): # known special case of str.__init__
"""
str(object='') -> string

Return a nice string representation of the object.
If the argument is a string, the return value is the same object.
# (copied from class doc)
"""
pass

def __len__(self):
""" x.__len__() <==> len(x) """
pass

def __le__(self, y):
""" x.__le__(y) <==> x<=y """
pass

def __lt__(self, y):
""" x.__lt__(y) <==> x<y """
pass

def __mod__(self, y):
""" x.__mod__(y) <==> x%y """
pass

def __mul__(self, n):
""" x.__mul__(n) <==> x*n """
pass

@staticmethod # known case of __new__
def __new__(S, *more):
""" T.__new__(S, ...) -> a new object with type S, a subtype of T """
pass

def __ne__(self, y):
""" x.__ne__(y) <==> x!=y """
pass

def __repr__(self):
""" x.__repr__() <==> repr(x) """
pass

def __rmod__(self, y):
""" x.__rmod__(y) <==> y%x """
pass

def __rmul__(self, n):
""" x.__rmul__(n) <==> n*x """
pass

def __sizeof__(self):
""" S.__sizeof__() -> size of S in memory, in bytes """
pass

def __str__(self):
""" x.__str__() <==> str(x) """
pass
str

class list(object):
"""
list() -> new empty list
list(iterable) -> new list initialized from iterable's items
"""
def append(self, p_object): # real signature unknown; restored from __doc__
""" L.append(object) -- append object to end """
pass

def count(self, value): # real signature unknown; restored from __doc__
""" L.count(value) -> integer -- return number of occurrences of value """
return 0

def extend(self, iterable): # real signature unknown; restored from __doc__
""" L.extend(iterable) -- extend list by appending elements from the iterable """
pass

def index(self, value, start=None, stop=None): # real signature unknown; restored from __doc__
"""
L.index(value, [start, [stop]]) -> integer -- return first index of value.
Raises ValueError if the value is not present.
"""
return 0

def insert(self, index, p_object): # real signature unknown; restored from __doc__
""" L.insert(index, object) -- insert object before index """
pass

def pop(self, index=None): # real signature unknown; restored from __doc__
"""
L.pop([index]) -> item -- remove and return item at index (default last).
Raises IndexError if list is empty or index is out of range.
"""
pass

def remove(self, value): # real signature unknown; restored from __doc__
"""
L.remove(value) -- remove first occurrence of value.
Raises ValueError if the value is not present.
"""
pass

def reverse(self): # real signature unknown; restored from __doc__
""" L.reverse() -- reverse *IN PLACE* """
pass

def sort(self, cmp=None, key=None, reverse=False): # real signature unknown; restored from __doc__
"""
L.sort(cmp=None, key=None, reverse=False) -- stable sort *IN PLACE*;
cmp(x, y) -> -1, 0, 1
"""
pass

def __add__(self, y): # real signature unknown; restored from __doc__
pass

def __contains__(self, y): # real signature unknown; restored from __doc__
""" x.__contains__(y) <==> y in x """
pass

def __delitem__(self, y): # real signature unknown; restored from __doc__
""" x.__delitem__(y) <==> del x[y] """
pass

def __delslice__(self, i, j): # real signature unknown; restored from __doc__
"""
x.__delslice__(i, j) <==> del x[i:j]

Use of negative indices is not supported.
"""
pass

def __eq__(self, y): # real signature unknown; restored from __doc__
""" x.__eq__(y) <==> x==y """
pass

def __getattribute__(self, name): # real signature unknown; restored from __doc__
""" x.__getattribute__('name') <==> x.name """
pass

def __getitem__(self, y): # real signature unknown; restored from __doc__
""" x.__getitem__(y) <==> x[y] """
pass

def __getslice__(self, i, j): # real signature unknown; restored from __doc__
"""
x.__getslice__(i, j) <==> x[i:j]

Use of negative indices is not supported.
"""
pass

def __ge__(self, y): # real signature unknown; restored from __doc__
""" x.__ge__(y) <==> x>=y """
pass

def __gt__(self, y): # real signature unknown; restored from __doc__
""" x.__gt__(y) <==> x>y """
pass

def __iadd__(self, y): # real signature unknown; restored from __doc__
pass

def __imul__(self, y): # real signature unknown; restored from __doc__
""" x.__imul__(y) <==> x*=y """
pass

def __init__(self, seq=()): # known special case of list.__init__
"""
list() -> new empty list
list(iterable) -> new list initialized from iterable's items
# (copied from class doc)
"""
pass

def __iter__(self): # real signature unknown; restored from __doc__
""" x.__iter__() <==> iter(x) """
pass

def __len__(self): # real signature unknown; restored from __doc__
""" x.__len__() <==> len(x) """
pass

def __le__(self, y): # real signature unknown; restored from __doc__
""" x.__le__(y) <==> x<=y """
pass

def __lt__(self, y): # real signature unknown; restored from __doc__
""" x.__lt__(y) <==> x<y """
pass

def __mul__(self, n): # real signature unknown; restored from __doc__
""" x.__mul__(n) <==> x*n """
pass

@staticmethod # known case of __new__
def __new__(S, *more): # real signature unknown; restored from __doc__
""" T.__new__(S, ...) -> a new object with type S, a subtype of T """
pass

def __ne__(self, y): # real signature unknown; restored from __doc__
""" x.__ne__(y) <==> x!=y """
pass

def __repr__(self): # real signature unknown; restored from __doc__
""" x.__repr__() <==> repr(x) """
pass

def __reversed__(self): # real signature unknown; restored from __doc__
""" L.__reversed__() -- return a reverse iterator over the list """
pass

def __rmul__(self, n): # real signature unknown; restored from __doc__
""" x.__rmul__(n) <==> n*x """
pass

def __setitem__(self, i, y): # real signature unknown; restored from __doc__
""" x.__setitem__(i, y) <==> x[i]=y """
pass

def __setslice__(self, i, j, y): # real signature unknown; restored from __doc__
"""
x.__setslice__(i, j, y) <==> x[i:j]=y

Use  of negative indices is not supported.
"""
pass

def __sizeof__(self): # real signature unknown; restored from __doc__
""" L.__sizeof__() -- size of L in memory, in bytes """
pass

__hash__ = None
list

class tuple(object):
"""
tuple() -> empty tuple
tuple(iterable) -> tuple initialized from iterable's items

If the argument is a tuple, the return value is the same object.
"""
def count(self, value): # real signature unknown; restored from __doc__
""" T.count(value) -> integer -- return number of occurrences of value """
return 0

def index(self, value, start=None, stop=None): # real signature unknown; restored from __doc__
"""
T.index(value, [start, [stop]]) -> integer -- return first index of value.
Raises ValueError if the value is not present.
"""
return 0

def __add__(self, y): # real signature unknown; restored from __doc__
pass

def __contains__(self, y): # real signature unknown; restored from __doc__
""" x.__contains__(y) <==> y in x """
pass

def __eq__(self, y): # real signature unknown; restored from __doc__
""" x.__eq__(y) <==> x==y """
pass

def __getattribute__(self, name): # real signature unknown; restored from __doc__
""" x.__getattribute__('name') <==> x.name """
pass

def __getitem__(self, y): # real signature unknown; restored from __doc__
""" x.__getitem__(y) <==> x[y] """
pass

def __getnewargs__(self, *args, **kwargs): # real signature unknown
pass

def __getslice__(self, i, j): # real signature unknown; restored from __doc__
"""
x.__getslice__(i, j) <==> x[i:j]

Use of negative indices is not supported.
"""
pass

def __ge__(self, y): # real signature unknown; restored from __doc__
""" x.__ge__(y) <==> x>=y """
pass

def __gt__(self, y): # real signature unknown; restored from __doc__
""" x.__gt__(y) <==> x>y """
pass

def __hash__(self): # real signature unknown; restored from __doc__
""" x.__hash__() <==> hash(x) """
pass

def __init__(self, seq=()): # known special case of tuple.__init__
"""
tuple() -> empty tuple
tuple(iterable) -> tuple initialized from iterable's items

If the argument is a tuple, the return value is the same object.
# (copied from class doc)
"""
pass

def __iter__(self): # real signature unknown; restored from __doc__
""" x.__iter__() <==> iter(x) """
pass

def __len__(self): # real signature unknown; restored from __doc__
""" x.__len__() <==> len(x) """
pass

def __le__(self, y): # real signature unknown; restored from __doc__
""" x.__le__(y) <==> x<=y """
pass

def __lt__(self, y): # real signature unknown; restored from __doc__
""" x.__lt__(y) <==> x<y """
pass

def __mul__(self, n): # real signature unknown; restored from __doc__
""" x.__mul__(n) <==> x*n """
pass

@staticmethod # known case of __new__
def __new__(S, *more): # real signature unknown; restored from __doc__
""" T.__new__(S, ...) -> a new object with type S, a subtype of T """
pass

def __ne__(self, y): # real signature unknown; restored from __doc__
""" x.__ne__(y) <==> x!=y """
pass

def __repr__(self): # real signature unknown; restored from __doc__
""" x.__repr__() <==> repr(x) """
pass

def __rmul__(self, n): # real signature unknown; restored from __doc__
""" x.__rmul__(n) <==> n*x """
pass

def __sizeof__(self): # real signature unknown; restored from __doc__
""" T.__sizeof__() -- size of T in memory, in bytes """
pass
tuple

ps：循环时，默认循环key

class dict(object):
"""
dict() -> new empty dictionary
dict(mapping) -> new dictionary initialized from a mapping object's
(key, value) pairs
dict(iterable) -> new dictionary initialized as if via:
d = {}
for k, v in iterable:
d[k] = v
dict(**kwargs) -> new dictionary initialized with the name=value pairs
in the keyword argument list.  For example:  dict(one=1, two=2)
"""

def clear(self): # real signature unknown; restored from __doc__
""" 清除内容 """
""" D.clear() -> None.  Remove all items from D. """
pass

def copy(self): # real signature unknown; restored from __doc__
""" 浅拷贝 """
""" D.copy() -> a shallow copy of D """
pass

@staticmethod # known case
def fromkeys(S, v=None): # real signature unknown; restored from __doc__
"""
dict.fromkeys(S[,v]) -> New dict with keys from S and values equal to v.
v defaults to None.
"""
pass

def get(self, k, d=None): # real signature unknown; restored from __doc__
""" 根据key获取值，d是默认值 """
""" D.get(k[,d]) -> D[k] if k in D, else d.  d defaults to None. """
pass

def has_key(self, k): # real signature unknown; restored from __doc__
""" 是否有key """
""" D.has_key(k) -> True if D has a key k, else False """
return False

def items(self): # real signature unknown; restored from __doc__
""" 所有项的列表形式 """
""" D.items() -> list of D's (key, value) pairs, as 2-tuples """
return []

def iteritems(self): # real signature unknown; restored from __doc__
""" 项可迭代 """
""" D.iteritems() -> an iterator over the (key, value) items of D """
pass

def iterkeys(self): # real signature unknown; restored from __doc__
""" key可迭代 """
""" D.iterkeys() -> an iterator over the keys of D """
pass

def itervalues(self): # real signature unknown; restored from __doc__
""" value可迭代 """
""" D.itervalues() -> an iterator over the values of D """
pass

def keys(self): # real signature unknown; restored from __doc__
""" 所有的key列表 """
""" D.keys() -> list of D's keys """
return []

def pop(self, k, d=None): # real signature unknown; restored from __doc__
""" 获取并在字典中移除 """
"""
D.pop(k[,d]) -> v, remove specified key and return the corresponding value.
If key is not found, d is returned if given, otherwise KeyError is raised
"""
pass

def popitem(self): # real signature unknown; restored from __doc__
""" 获取并在字典中移除 """
"""
D.popitem() -> (k, v), remove and return some (key, value) pair as a
2-tuple; but raise KeyError if D is empty.
"""
pass

def setdefault(self, k, d=None): # real signature unknown; restored from __doc__
""" 如果key不存在，则创建，如果存在，则返回已存在的值且不修改 """
""" D.setdefault(k[,d]) -> D.get(k,d), also set D[k]=d if k not in D """
pass

def update(self, E=None, **F): # known special case of dict.update
""" 更新
{'name':'alex', 'age': 18000}
[('name','sbsbsb'),]
"""
"""
D.update([E, ]**F) -> None.  Update D from dict/iterable E and F.
If E present and has a .keys() method, does:     for k in E: D[k] = E[k]
If E present and lacks .keys() method, does:     for (k, v) in E: D[k] = v
In either case, this is followed by: for k in F: D[k] = F[k]
"""
pass

def values(self): # real signature unknown; restored from __doc__
""" 所有的值 """
""" D.values() -> list of D's values """
return []

def viewitems(self): # real signature unknown; restored from __doc__
""" 所有项，只是将内容保存至view对象中 """
""" D.viewitems() -> a set-like object providing a view on D's items """
pass

def viewkeys(self): # real signature unknown; restored from __doc__
""" D.viewkeys() -> a set-like object providing a view on D's keys """
pass

def viewvalues(self): # real signature unknown; restored from __doc__
""" D.viewvalues() -> an object providing a view on D's values """
pass

def __cmp__(self, y): # real signature unknown; restored from __doc__
""" x.__cmp__(y) <==> cmp(x,y) """
pass

def __contains__(self, k): # real signature unknown; restored from __doc__
""" D.__contains__(k) -> True if D has a key k, else False """
return False

def __delitem__(self, y): # real signature unknown; restored from __doc__
""" x.__delitem__(y) <==> del x[y] """
pass

def __eq__(self, y): # real signature unknown; restored from __doc__
""" x.__eq__(y) <==> x==y """
pass

def __getattribute__(self, name): # real signature unknown; restored from __doc__
""" x.__getattribute__('name') <==> x.name """
pass

def __getitem__(self, y): # real signature unknown; restored from __doc__
""" x.__getitem__(y) <==> x[y] """
pass

def __ge__(self, y): # real signature unknown; restored from __doc__
""" x.__ge__(y) <==> x>=y """
pass

def __gt__(self, y): # real signature unknown; restored from __doc__
""" x.__gt__(y) <==> x>y """
pass

def __init__(self, seq=None, **kwargs): # known special case of dict.__init__
"""
dict() -> new empty dictionary
dict(mapping) -> new dictionary initialized from a mapping object's
(key, value) pairs
dict(iterable) -> new dictionary initialized as if via:
d = {}
for k, v in iterable:
d[k] = v
dict(**kwargs) -> new dictionary initialized with the name=value pairs
in the keyword argument list.  For example:  dict(one=1, two=2)
# (copied from class doc)
"""
pass

def __iter__(self): # real signature unknown; restored from __doc__
""" x.__iter__() <==> iter(x) """
pass

def __len__(self): # real signature unknown; restored from __doc__
""" x.__len__() <==> len(x) """
pass

def __le__(self, y): # real signature unknown; restored from __doc__
""" x.__le__(y) <==> x<=y """
pass

def __lt__(self, y): # real signature unknown; restored from __doc__
""" x.__lt__(y) <==> x<y """
pass

@staticmethod # known case of __new__
def __new__(S, *more): # real signature unknown; restored from __doc__
""" T.__new__(S, ...) -> a new object with type S, a subtype of T """
pass

def __ne__(self, y): # real signature unknown; restored from __doc__
""" x.__ne__(y) <==> x!=y """
pass

def __repr__(self): # real signature unknown; restored from __doc__
""" x.__repr__() <==> repr(x) """
pass

def __setitem__(self, i, y): # real signature unknown; restored from __doc__
""" x.__setitem__(i, y) <==> x[i]=y """
pass

def __sizeof__(self): # real signature unknown; restored from __doc__
""" D.__sizeof__() -> size of D in memory, in bytes """
pass

__hash__ = None
dict

有如下值集合 [11,22,33,44,55,66,77,88,99,90...]，将所有大于 66 的值保存至字典的第一个key中，将小于 66 的值保存至第二个key的值中。



八、set集合

set是一个无序且不重复的元素集合

class set(object):
"""
set() -> new empty set object
set(iterable) -> new set object

Build an unordered collection of unique elements.
"""
def add(self, *args, **kwargs): # real signature unknown
""" 添加 """
"""
Add an element to a set.

This has no effect if the element is already present.
"""
pass

def clear(self, *args, **kwargs): # real signature unknown
""" Remove all elements from this set. """
pass

def copy(self, *args, **kwargs): # real signature unknown
""" Return a shallow copy of a set. """
pass

def difference(self, *args, **kwargs): # real signature unknown
"""
Return the difference of two or more sets as a new set.

(i.e. all elements that are in this set but not the others.)
"""
pass

def difference_update(self, *args, **kwargs): # real signature unknown
""" 删除当前set中的所有包含在 new set 里的元素 """
""" Remove all elements of another set from this set. """
pass

def discard(self, *args, **kwargs): # real signature unknown
""" 移除元素 """
"""
Remove an element from a set if it is a member.

If the element is not a member, do nothing.
"""
pass

def intersection(self, *args, **kwargs): # real signature unknown
""" 取交集，新创建一个set """
"""
Return the intersection of two or more sets as a new set.

(i.e. elements that are common to all of the sets.)
"""
pass

def intersection_update(self, *args, **kwargs): # real signature unknown
""" 取交集，修改原来set """
""" Update a set with the intersection of itself and another. """
pass

def isdisjoint(self, *args, **kwargs): # real signature unknown
""" 如果没有交集，返回true  """
""" Return True if two sets have a null intersection. """
pass

def issubset(self, *args, **kwargs): # real signature unknown
""" 是否是子集 """
""" Report whether another set contains this set. """
pass

def issuperset(self, *args, **kwargs): # real signature unknown
""" 是否是父集 """
""" Report whether this set contains another set. """
pass

def pop(self, *args, **kwargs): # real signature unknown
""" 移除 """
"""
Remove and return an arbitrary set element.
Raises KeyError if the set is empty.
"""
pass

def remove(self, *args, **kwargs): # real signature unknown
""" 移除 """
"""
Remove an element from a set; it must be a member.

If the element is not a member, raise a KeyError.
"""
pass

def symmetric_difference(self, *args, **kwargs): # real signature unknown
""" 差集，创建新对象"""
"""
Return the symmetric difference of two sets as a new set.

(i.e. all elements that are in exactly one of the sets.)
"""
pass

def symmetric_difference_update(self, *args, **kwargs): # real signature unknown
""" 差集，改变原来 """
""" Update a set with the symmetric difference of itself and another. """
pass

def union(self, *args, **kwargs): # real signature unknown
""" 并集 """
"""
Return the union of sets as a new set.

(i.e. all elements that are in either set.)
"""
pass

def update(self, *args, **kwargs): # real signature unknown
""" 更新 """
""" Update a set with the union of itself and others. """
pass

def __and__(self, y): # real signature unknown; restored from __doc__
""" x.__and__(y) <==> x&y """
pass

def __cmp__(self, y): # real signature unknown; restored from __doc__
""" x.__cmp__(y) <==> cmp(x,y) """
pass

def __contains__(self, y): # real signature unknown; restored from __doc__
""" x.__contains__(y) <==> y in x. """
pass

def __eq__(self, y): # real signature unknown; restored from __doc__
""" x.__eq__(y) <==> x==y """
pass

def __getattribute__(self, name): # real signature unknown; restored from __doc__
""" x.__getattribute__('name') <==> x.name """
pass

def __ge__(self, y): # real signature unknown; restored from __doc__
""" x.__ge__(y) <==> x>=y """
pass

def __gt__(self, y): # real signature unknown; restored from __doc__
""" x.__gt__(y) <==> x>y """
pass

def __iand__(self, y): # real signature unknown; restored from __doc__
""" x.__iand__(y) <==> x&=y """
pass

def __init__(self, seq=()): # known special case of set.__init__
"""
set() -> new empty set object
set(iterable) -> new set object

Build an unordered collection of unique elements.
# (copied from class doc)
"""
pass

def __ior__(self, y): # real signature unknown; restored from __doc__
""" x.__ior__(y) <==> x|=y """
pass

def __isub__(self, y): # real signature unknown; restored from __doc__
""" x.__isub__(y) <==> x-=y """
pass

def __iter__(self): # real signature unknown; restored from __doc__
""" x.__iter__() <==> iter(x) """
pass

def __ixor__(self, y): # real signature unknown; restored from __doc__
""" x.__ixor__(y) <==> x^=y """
pass

def __len__(self): # real signature unknown; restored from __doc__
""" x.__len__() <==> len(x) """
pass

def __le__(self, y): # real signature unknown; restored from __doc__
""" x.__le__(y) <==> x<=y """
pass

def __lt__(self, y): # real signature unknown; restored from __doc__
""" x.__lt__(y) <==> x<y """
pass

@staticmethod # known case of __new__
def __new__(S, *more): # real signature unknown; restored from __doc__
""" T.__new__(S, ...) -> a new object with type S, a subtype of T """
pass

def __ne__(self, y): # real signature unknown; restored from __doc__
""" x.__ne__(y) <==> x!=y """
pass

def __or__(self, y): # real signature unknown; restored from __doc__
""" x.__or__(y) <==> x|y """
pass

def __rand__(self, y): # real signature unknown; restored from __doc__
""" x.__rand__(y) <==> y&x """
pass

def __reduce__(self, *args, **kwargs): # real signature unknown
""" Return state information for pickling. """
pass

def __repr__(self): # real signature unknown; restored from __doc__
""" x.__repr__() <==> repr(x) """
pass

def __ror__(self, y): # real signature unknown; restored from __doc__
""" x.__ror__(y) <==> y|x """
pass

def __rsub__(self, y): # real signature unknown; restored from __doc__
""" x.__rsub__(y) <==> y-x """
pass

def __rxor__(self, y): # real signature unknown; restored from __doc__
""" x.__rxor__(y) <==> y^x """
pass

def __sizeof__(self): # real signature unknown; restored from __doc__
""" S.__sizeof__() -> size of S in memory, in bytes """
pass

def __sub__(self, y): # real signature unknown; restored from __doc__
""" x.__sub__(y) <==> x-y """
pass

def __xor__(self, y): # real signature unknown; restored from __doc__
""" x.__xor__(y) <==> x^y """
pass

__hash__ = None
set

# 数据库中原有
old_dict = {
"#1":{ 'hostname':c1, 'cpu_count': 2, 'mem_capicity': 80 },
"#2":{ 'hostname':c1, 'cpu_count': 2, 'mem_capicity': 80 }
"#3":{ 'hostname':c1, 'cpu_count': 2, 'mem_capicity': 80 }
}

# cmdb 新汇报的数据
new_dict = {
"#1":{ 'hostname':c1, 'cpu_count': 2, 'mem_capicity': 800 },
"#3":{ 'hostname':c1, 'cpu_count': 2, 'mem_capicity': 80 }
"#4":{ 'hostname':c2, 'cpu_count': 2, 'mem_capicity': 80 }
}


old_set = set(old_dict.keys())
update_list = list(old_set.intersection(new_dict.keys()))

new_list = []
del_list = []

for i in new_dict.keys():
if i not in update_list:
new_list.append(i)

for i in old_dict.keys():
if i not in update_list:
del_list.append(i)

print update_list,new_list,del_list
demo

### collections系列

Counter是对字典类型的补充，用于追踪值的出现次数。

ps：具备字典的所有功能 + 自己的功能

c = Counter('abcdeabcdabcaba')
print c


########################################################################
###  Counter
########################################################################

class Counter(dict):
'''Dict subclass for counting hashable items.  Sometimes called a bag
or multiset.  Elements are stored as dictionary keys and their counts
are stored as dictionary values.

>>> c = Counter('abcdeabcdabcaba')  # count elements from a string

>>> c.most_common(3)                # three most common elements
[('a', 5), ('b', 4), ('c', 3)]
>>> sorted(c)                       # list all unique elements
['a', 'b', 'c', 'd', 'e']
>>> ''.join(sorted(c.elements()))   # list elements with repetitions
'aaaaabbbbcccdde'
>>> sum(c.values())                 # total of all counts

>>> c['a']                          # count of letter 'a'
>>> for elem in 'shazam':           # update counts from an iterable
...     c[elem] += 1                # by adding 1 to each element's count
>>> c['a']                          # now there are seven 'a'
>>> del c['b']                      # remove all 'b'
>>> c['b']                          # now there are zero 'b'

>>> d = Counter('simsalabim')       # make another counter
>>> c.update(d)                     # add in the second counter
>>> c['a']                          # now there are nine 'a'

>>> c.clear()                       # empty the counter
>>> c
Counter()

Note:  If a count is set to zero or reduced to zero, it will remain
in the counter until the entry is deleted or the counter is cleared:

>>> c = Counter('aaabbc')
>>> c['b'] -= 2                     # reduce the count of 'b' by two
>>> c.most_common()                 # 'b' is still in, but its count is zero
[('a', 3), ('c', 1), ('b', 0)]

'''
# References:
#   http://en.wikipedia.org/wiki/Multiset
#   http://www.gnu.org/software/smalltalk/manual-base/html_node/Bag.html
#   http://www.demo2s.com/Tutorial/Cpp/0380__set-multiset/Catalog0380__set-multiset.htm
#   http://code.activestate.com/recipes/259174/
#   Knuth, TAOCP Vol. II section 4.6.3

def __init__(self, iterable=None, **kwds):
'''Create a new, empty Counter object.  And if given, count elements
from an input iterable.  Or, initialize the count from another mapping
of elements to their counts.

>>> c = Counter()                           # a new, empty counter
>>> c = Counter('gallahad')                 # a new counter from an iterable
>>> c = Counter({'a': 4, 'b': 2})           # a new counter from a mapping
>>> c = Counter(a=4, b=2)                   # a new counter from keyword args

'''
super(Counter, self).__init__()
self.update(iterable, **kwds)

def __missing__(self, key):
""" 对于不存在的元素，返回计数器为0 """
'The count of elements not in the Counter is zero.'
# Needed so that self[missing_item] does not raise KeyError
return 0

def most_common(self, n=None):
""" 数量大于等n的所有元素和计数器 """
'''List the n most common elements and their counts from the most
common to the least.  If n is None, then list all element counts.

>>> Counter('abcdeabcdabcaba').most_common(3)
[('a', 5), ('b', 4), ('c', 3)]

'''
# Emulate Bag.sortedByCount from Smalltalk
if n is None:
return sorted(self.iteritems(), key=_itemgetter(1), reverse=True)
return _heapq.nlargest(n, self.iteritems(), key=_itemgetter(1))

def elements(self):
""" 计数器中的所有元素，注：此处非所有元素集合，而是包含所有元素集合的迭代器 """
'''Iterator over elements repeating each as many times as its count.

>>> c = Counter('ABCABC')
>>> sorted(c.elements())
['A', 'A', 'B', 'B', 'C', 'C']

# Knuth's example for prime factors of 1836:  2**2 * 3**3 * 17**1
>>> prime_factors = Counter({2: 2, 3: 3, 17: 1})
>>> product = 1
>>> for factor in prime_factors.elements():     # loop over factors
...     product *= factor                       # and multiply them
>>> product

Note, if an element's count has been set to zero or is a negative
number, elements() will ignore it.

'''
# Emulate Bag.do from Smalltalk and Multiset.begin from C++.
return _chain.from_iterable(_starmap(_repeat, self.iteritems()))

# Override dict methods where necessary

@classmethod
def fromkeys(cls, iterable, v=None):
# There is no equivalent method for counters because setting v=1
# means that no element can have a count greater than one.
raise NotImplementedError(
'Counter.fromkeys() is undefined.  Use Counter(iterable) instead.')

def update(self, iterable=None, **kwds):
""" 更新计数器，其实就是增加；如果原来没有，则新建，如果有则加一 """

Source can be an iterable, a dictionary, or another Counter instance.

>>> c = Counter('which')
>>> c.update('witch')           # add elements from another iterable
>>> d = Counter('watch')
>>> c.update(d)                 # add elements from another counter
>>> c['h']                      # four 'h' in which, witch, and watch

'''
# The regular dict.update() operation makes no sense here because the
# replace behavior results in the some of original untouched counts
# being mixed-in with all of the other counts for a mismash that
# doesn't have a straight-forward interpretation in most counting
# and outputs are allowed to contain zero and negative counts.

if iterable is not None:
if isinstance(iterable, Mapping):
if self:
self_get = self.get
for elem, count in iterable.iteritems():
self[elem] = self_get(elem, 0) + count
else:
super(Counter, self).update(iterable) # fast path when counter is empty
else:
self_get = self.get
for elem in iterable:
self[elem] = self_get(elem, 0) + 1
if kwds:
self.update(kwds)

def subtract(self, iterable=None, **kwds):
""" 相减，原来的计数器中的每一个元素的数量减去后添加的元素的数量 """
'''Like dict.update() but subtracts counts instead of replacing them.
Counts can be reduced below zero.  Both the inputs and outputs are
allowed to contain zero and negative counts.

Source can be an iterable, a dictionary, or another Counter instance.

>>> c = Counter('which')
>>> c.subtract('witch')             # subtract elements from another iterable
>>> c.subtract(Counter('watch'))    # subtract elements from another counter
>>> c['h']                          # 2 in which, minus 1 in witch, minus 1 in watch
>>> c['w']                          # 1 in which, minus 1 in witch, minus 1 in watch
-1

'''
if iterable is not None:
self_get = self.get
if isinstance(iterable, Mapping):
for elem, count in iterable.items():
self[elem] = self_get(elem, 0) - count
else:
for elem in iterable:
self[elem] = self_get(elem, 0) - 1
if kwds:
self.subtract(kwds)

def copy(self):
""" 拷贝 """
'Return a shallow copy.'
return self.__class__(self)

def __reduce__(self):
""" 返回一个元组（类型，元组） """
return self.__class__, (dict(self),)

def __delitem__(self, elem):
""" 删除元素 """
'Like dict.__delitem__() but does not raise KeyError for missing values.'
if elem in self:
super(Counter, self).__delitem__(elem)

def __repr__(self):
if not self:
return '%s()' % self.__class__.__name__
items = ', '.join(map('%r: %r'.__mod__, self.most_common()))
return '%s({%s})' % (self.__class__.__name__, items)

# Multiset-style mathematical operations discussed in:
#       Knuth TAOCP Volume II section 4.6.3 exercise 19
#       and at http://en.wikipedia.org/wiki/Multiset
#
# Outputs guaranteed to only include positive counts.
#
# To strip negative and zero counts, add-in an empty counter:
#       c += Counter()

>>> Counter('abbb') + Counter('bcc')
Counter({'b': 4, 'c': 2, 'a': 1})

'''
if not isinstance(other, Counter):
return NotImplemented
result = Counter()
for elem, count in self.items():
newcount = count + other[elem]
if newcount > 0:
result[elem] = newcount
for elem, count in other.items():
if elem not in self and count > 0:
result[elem] = count
return result

def __sub__(self, other):
''' Subtract count, but keep only results with positive counts.

>>> Counter('abbbc') - Counter('bccd')
Counter({'b': 2, 'a': 1})

'''
if not isinstance(other, Counter):
return NotImplemented
result = Counter()
for elem, count in self.items():
newcount = count - other[elem]
if newcount > 0:
result[elem] = newcount
for elem, count in other.items():
if elem not in self and count < 0:
result[elem] = 0 - count
return result

def __or__(self, other):
'''Union is the maximum of value in either of the input counters.

>>> Counter('abbb') | Counter('bcc')
Counter({'b': 3, 'c': 2, 'a': 1})

'''
if not isinstance(other, Counter):
return NotImplemented
result = Counter()
for elem, count in self.items():
other_count = other[elem]
newcount = other_count if count < other_count else count
if newcount > 0:
result[elem] = newcount
for elem, count in other.items():
if elem not in self and count > 0:
result[elem] = count
return result

def __and__(self, other):
''' Intersection is the minimum of corresponding counts.

>>> Counter('abbb') & Counter('bcc')
Counter({'b': 1})

'''
if not isinstance(other, Counter):
return NotImplemented
result = Counter()
for elem, count in self.items():
other_count = other[elem]
newcount = count if count < other_count else other_count
if newcount > 0:
result[elem] = newcount
return result
Counter

orderdDict是对字典类型的补充，他记住了字典元素添加的顺序

class OrderedDict(dict):
'Dictionary that remembers insertion order'
# An inherited dict maps keys to values.
# The inherited dict provides __getitem__, __len__, __contains__, and get.
# The remaining methods are order-aware.
# Big-O running times for all methods are the same as regular dictionaries.

# The internal self.__map dict maps keys to links in a doubly linked list.
# The circular doubly linked list starts and ends with a sentinel element.
# The sentinel element never gets deleted (this simplifies the algorithm).
# Each link is stored as a list of length three:  [PREV, NEXT, KEY].

def __init__(self, *args, **kwds):
'''Initialize an ordered dictionary.  The signature is the same as
regular dictionaries, but keyword arguments are not recommended because
their insertion order is arbitrary.

'''
if len(args) > 1:
raise TypeError('expected at most 1 arguments, got %d' % len(args))
try:
self.__root
except AttributeError:
self.__root = root = []                     # sentinel node
root[:] = [root, root, None]
self.__map = {}
self.__update(*args, **kwds)

def __setitem__(self, key, value, dict_setitem=dict.__setitem__):
'od.__setitem__(i, y) <==> od[i]=y'
# Setting a new item creates a new link at the end of the linked list,
# and the inherited dictionary is updated with the new key/value pair.
if key not in self:
root = self.__root
last = root[0]
last[1] = root[0] = self.__map[key] = [last, root, key]
return dict_setitem(self, key, value)

def __delitem__(self, key, dict_delitem=dict.__delitem__):
'od.__delitem__(y) <==> del od[y]'
# Deleting an existing item uses self.__map to find the link which gets
# removed by updating the links in the predecessor and successor nodes.
dict_delitem(self, key)

def __iter__(self):
'od.__iter__() <==> iter(od)'
# Traverse the linked list in order.
root = self.__root
curr = root[1]                                  # start at the first node
while curr is not root:
yield curr[2]                               # yield the curr[KEY]
curr = curr[1]                              # move to next node

def __reversed__(self):
'od.__reversed__() <==> reversed(od)'
# Traverse the linked list in reverse order.
root = self.__root
curr = root[0]                                  # start at the last node
while curr is not root:
yield curr[2]                               # yield the curr[KEY]
curr = curr[0]                              # move to previous node

def clear(self):
'od.clear() -> None.  Remove all items from od.'
root = self.__root
root[:] = [root, root, None]
self.__map.clear()
dict.clear(self)

# -- the following methods do not depend on the internal structure --

def keys(self):
'od.keys() -> list of keys in od'
return list(self)

def values(self):
'od.values() -> list of values in od'
return [self[key] for key in self]

def items(self):
'od.items() -> list of (key, value) pairs in od'
return [(key, self[key]) for key in self]

def iterkeys(self):
'od.iterkeys() -> an iterator over the keys in od'
return iter(self)

def itervalues(self):
'od.itervalues -> an iterator over the values in od'
for k in self:
yield self[k]

def iteritems(self):
'od.iteritems -> an iterator over the (key, value) pairs in od'
for k in self:
yield (k, self[k])

update = MutableMapping.update

__update = update # let subclasses override update without breaking __init__

__marker = object()

def pop(self, key, default=__marker):
'''od.pop(k[,d]) -> v, remove specified key and return the corresponding
value.  If key is not found, d is returned if given, otherwise KeyError
is raised.

'''
if key in self:
result = self[key]
del self[key]
return result
if default is self.__marker:
raise KeyError(key)
return default

def setdefault(self, key, default=None):
'od.setdefault(k[,d]) -> od.get(k,d), also set od[k]=d if k not in od'
if key in self:
return self[key]
self[key] = default
return default

def popitem(self, last=True):
'''od.popitem() -> (k, v), return and remove a (key, value) pair.
Pairs are returned in LIFO order if last is true or FIFO order if false.

'''
if not self:
raise KeyError('dictionary is empty')
key = next(reversed(self) if last else iter(self))
value = self.pop(key)
return key, value

def __repr__(self, _repr_running={}):
'od.__repr__() <==> repr(od)'
call_key = id(self), _get_ident()
if call_key in _repr_running:
return '...'
_repr_running[call_key] = 1
try:
if not self:
return '%s()' % (self.__class__.__name__,)
return '%s(%r)' % (self.__class__.__name__, self.items())
finally:
del _repr_running[call_key]

def __reduce__(self):
'Return state information for pickling'
items = [[k, self[k]] for k in self]
inst_dict = vars(self).copy()
for k in vars(OrderedDict()):
inst_dict.pop(k, None)
if inst_dict:
return (self.__class__, (items,), inst_dict)
return self.__class__, (items,)

def copy(self):
'od.copy() -> a shallow copy of od'
return self.__class__(self)

@classmethod
def fromkeys(cls, iterable, value=None):
'''OD.fromkeys(S[, v]) -> New ordered dictionary with keys from S.
If not specified, the value defaults to None.

'''
self = cls()
for key in iterable:
self[key] = value
return self

def __eq__(self, other):
'''od.__eq__(y) <==> od==y.  Comparison to another OD is order-sensitive
while comparison to a regular mapping is order-insensitive.

'''
if isinstance(other, OrderedDict):
return dict.__eq__(self, other) and all(_imap(_eq, self, other))
return dict.__eq__(self, other)

def __ne__(self, other):
'od.__ne__(y) <==> od!=y'
return not self == other

# -- the following methods support python 3.x style dictionary views --

def viewkeys(self):
"od.viewkeys() -> a set-like object providing a view on od's keys"
return KeysView(self)

def viewvalues(self):
"od.viewvalues() -> an object providing a view on od's values"
return ValuesView(self)

def viewitems(self):
"od.viewitems() -> a set-like object providing a view on od's items"
return ItemsView(self)
OrderedDict

defaultdict是对字典的类型的补充，他默认给字典的值设置了一个类型。

class defaultdict(dict):
"""
defaultdict(default_factory[, ...]) --> dict with default factory

The default factory is called without arguments to produce
a new value when a key is not present, in __getitem__ only.
A defaultdict compares equal to a dict with the same items.
All remaining arguments are treated the same as if they were
passed to the dict constructor, including keyword arguments.
"""
def copy(self): # real signature unknown; restored from __doc__
""" D.copy() -> a shallow copy of D. """
pass

def __copy__(self, *args, **kwargs): # real signature unknown
""" D.copy() -> a shallow copy of D. """
pass

def __getattribute__(self, name): # real signature unknown; restored from __doc__
""" x.__getattribute__('name') <==> x.name """
pass

def __init__(self, default_factory=None, **kwargs): # known case of _collections.defaultdict.__init__
"""
defaultdict(default_factory[, ...]) --> dict with default factory

The default factory is called without arguments to produce
a new value when a key is not present, in __getitem__ only.
A defaultdict compares equal to a dict with the same items.
All remaining arguments are treated the same as if they were
passed to the dict constructor, including keyword arguments.

# (copied from class doc)
"""
pass

def __missing__(self, key): # real signature unknown; restored from __doc__
"""
__missing__(key) # Called by __getitem__ for missing key; pseudo-code:
if self.default_factory is None: raise KeyError((key,))
self[key] = value = self.default_factory()
return value
"""
pass

def __reduce__(self, *args, **kwargs): # real signature unknown
""" Return state information for pickling. """
pass

def __repr__(self): # real signature unknown; restored from __doc__
""" x.__repr__() <==> repr(x) """
pass

default_factory = property(lambda self: object(), lambda self, v: None, lambda self: None)  # default
"""Factory for default value called by __missing__()."""
defaultdict

有如下值集合 [11,22,33,44,55,66,77,88,99,90...]，将所有大于 66 的值保存至字典的第一个key中，将小于 66 的值保存至第二个key的值中。


values = [11, 22, 33,44,55,66,77,88,99,90]

my_dict = {}

for value in  values:
if value>66:
if my_dict.has_key('k1'):
my_dict['k1'].append(value)
else:
my_dict['k1'] = [value]
else:
if my_dict.has_key('k2'):
my_dict['k2'].append(value)
else:
my_dict['k2'] = [value]

from collections import defaultdict

values = [11, 22, 33,44,55,66,77,88,99,90]

my_dict = defaultdict(list)

for value in  values:
if value>66:
my_dict['k1'].append(value)
else:
my_dict['k2'].append(value)

defaultdict字典解决方法

import collections

Mytuple = collections.namedtuple('Mytuple',['x', 'y', 'z'])　　
class Mytuple(__builtin__.tuple)
|  Mytuple(x, y)
|
|  Method resolution order:
|      Mytuple
|      __builtin__.tuple
|      __builtin__.object
|
|  Methods defined here:
|
|  __getnewargs__(self)
|      Return self as a plain tuple.  Used by copy and pickle.
|
|  __getstate__(self)
|      Exclude the OrderedDict from pickling
|
|  __repr__(self)
|      Return a nicely formatted representation string
|
|  _asdict(self)
|      Return a new OrderedDict which maps field names to their values
|
|  _replace(_self, **kwds)
|      Return a new Mytuple object replacing specified fields with new values
|
|  ----------------------------------------------------------------------
|  Class methods defined here:
|
|  _make(cls, iterable, new=<built-in method __new__ of type object>, len=<built-in function len>) from __builtin__.type
|      Make a new Mytuple object from a sequence or iterable
|
|  ----------------------------------------------------------------------
|  Static methods defined here:
|
|  __new__(_cls, x, y)
|      Create new instance of Mytuple(x, y)
|
|  ----------------------------------------------------------------------
|  Data descriptors defined here:
|
|  __dict__
|      Return a new OrderedDict which maps field names to their values
|
|  x
|      Alias for field number 0
|
|  y
|      Alias for field number 1
|
|  ----------------------------------------------------------------------
|  Data and other attributes defined here:
|
|  _fields = ('x', 'y')
|
|  ----------------------------------------------------------------------
|  Methods inherited from __builtin__.tuple:
|
|
|  __contains__(...)
|      x.__contains__(y) <==> y in x
|
|  __eq__(...)
|      x.__eq__(y) <==> x==y
|
|  __ge__(...)
|      x.__ge__(y) <==> x>=y
|
|  __getattribute__(...)
|      x.__getattribute__('name') <==> x.name
|
|  __getitem__(...)
|      x.__getitem__(y) <==> x[y]
|
|  __getslice__(...)
|      x.__getslice__(i, j) <==> x[i:j]
|
|      Use of negative indices is not supported.
|
|  __gt__(...)
|      x.__gt__(y) <==> x>y
|
|  __hash__(...)
|      x.__hash__() <==> hash(x)
|
|  __iter__(...)
|      x.__iter__() <==> iter(x)
|
|  __le__(...)
|      x.__le__(y) <==> x<=y
|
|  __len__(...)
|      x.__len__() <==> len(x)
|
|  __lt__(...)
|      x.__lt__(y) <==> x<y
|
|  __mul__(...)
|      x.__mul__(n) <==> x*n
|
|  __ne__(...)
|      x.__ne__(y) <==> x!=y
|
|  __rmul__(...)
|      x.__rmul__(n) <==> n*x
|
|  __sizeof__(...)
|      T.__sizeof__() -- size of T in memory, in bytes
|
|  count(...)
|      T.count(value) -> integer -- return number of occurrences of value
|
|  index(...)
|      T.index(value, [start, [stop]]) -> integer -- return first index of value.
|      Raises ValueError if the value is not present.
Mytuple

class deque(object):
"""
deque([iterable[, maxlen]]) --> deque object

Build an ordered collection with optimized access from its endpoints.
"""
def append(self, *args, **kwargs): # real signature unknown
""" Add an element to the right side of the deque. """
pass

def appendleft(self, *args, **kwargs): # real signature unknown
""" Add an element to the left side of the deque. """
pass

def clear(self, *args, **kwargs): # real signature unknown
""" Remove all elements from the deque. """
pass

def count(self, value): # real signature unknown; restored from __doc__
""" D.count(value) -> integer -- return number of occurrences of value """
return 0

def extend(self, *args, **kwargs): # real signature unknown
""" Extend the right side of the deque with elements from the iterable """
pass

def extendleft(self, *args, **kwargs): # real signature unknown
""" Extend the left side of the deque with elements from the iterable """
pass

def pop(self, *args, **kwargs): # real signature unknown
""" Remove and return the rightmost element. """
pass

def popleft(self, *args, **kwargs): # real signature unknown
""" Remove and return the leftmost element. """
pass

def remove(self, value): # real signature unknown; restored from __doc__
""" D.remove(value) -- remove first occurrence of value. """
pass

def reverse(self): # real signature unknown; restored from __doc__
""" D.reverse() -- reverse *IN PLACE* """
pass

def rotate(self, *args, **kwargs): # real signature unknown
""" Rotate the deque n steps to the right (default n=1).  If n is negative, rotates left. """
pass

def __copy__(self, *args, **kwargs): # real signature unknown
""" Return a shallow copy of a deque. """
pass

def __delitem__(self, y): # real signature unknown; restored from __doc__
""" x.__delitem__(y) <==> del x[y] """
pass

def __eq__(self, y): # real signature unknown; restored from __doc__
""" x.__eq__(y) <==> x==y """
pass

def __getattribute__(self, name): # real signature unknown; restored from __doc__
""" x.__getattribute__('name') <==> x.name """
pass

def __getitem__(self, y): # real signature unknown; restored from __doc__
""" x.__getitem__(y) <==> x[y] """
pass

def __ge__(self, y): # real signature unknown; restored from __doc__
""" x.__ge__(y) <==> x>=y """
pass

def __gt__(self, y): # real signature unknown; restored from __doc__
""" x.__gt__(y) <==> x>y """
pass

def __iadd__(self, y): # real signature unknown; restored from __doc__
pass

def __init__(self, iterable=(), maxlen=None): # known case of _collections.deque.__init__
"""
deque([iterable[, maxlen]]) --> deque object

Build an ordered collection with optimized access from its endpoints.
# (copied from class doc)
"""
pass

def __iter__(self): # real signature unknown; restored from __doc__
""" x.__iter__() <==> iter(x) """
pass

def __len__(self): # real signature unknown; restored from __doc__
""" x.__len__() <==> len(x) """
pass

def __le__(self, y): # real signature unknown; restored from __doc__
""" x.__le__(y) <==> x<=y """
pass

def __lt__(self, y): # real signature unknown; restored from __doc__
""" x.__lt__(y) <==> x<y """
pass

@staticmethod # known case of __new__
def __new__(S, *more): # real signature unknown; restored from __doc__
""" T.__new__(S, ...) -> a new object with type S, a subtype of T """
pass

def __ne__(self, y): # real signature unknown; restored from __doc__
""" x.__ne__(y) <==> x!=y """
pass

def __reduce__(self, *args, **kwargs): # real signature unknown
""" Return state information for pickling. """
pass

def __repr__(self): # real signature unknown; restored from __doc__
""" x.__repr__() <==> repr(x) """
pass

def __reversed__(self): # real signature unknown; restored from __doc__
""" D.__reversed__() -- return a reverse iterator over the deque """
pass

def __setitem__(self, i, y): # real signature unknown; restored from __doc__
""" x.__setitem__(i, y) <==> x[i]=y """
pass

def __sizeof__(self): # real signature unknown; restored from __doc__
""" D.__sizeof__() -- size of D in memory, in bytes """
pass

maxlen = property(lambda self: object(), lambda self, v: None, lambda self: None)  # default
"""maximum size of a deque or None if unbounded"""

__hash__ = None

deque
deque

class Queue:
"""Create a queue object with a given maximum size.

If maxsize is <= 0, the queue size is infinite.
"""
def __init__(self, maxsize=0):
self.maxsize = maxsize
self._init(maxsize)
# mutex must be held whenever the queue is mutating.  All methods
# that acquire mutex must release it before returning.  mutex
# is shared between the three conditions, so acquiring and
# releasing the conditions also acquires and releases mutex.
# Notify not_empty whenever an item is added to the queue; a
# thread waiting to get is notified then.
# Notify not_full whenever an item is removed from the queue;
# a thread waiting to put is notified then.
# drops to zero; thread waiting to join() is notified to resume

"""Indicate that a formerly enqueued task is complete.

Used by Queue consumer threads.  For each get() used to fetch a task,
a subsequent call to task_done() tells the queue that the processing

If a join() is currently blocking, it will resume when all items
for every item that had been put() into the queue).

Raises a ValueError if called more times than there were items
placed in the queue.
"""
try:
if unfinished <= 0:
if unfinished < 0:
raise ValueError('task_done() called too many times')
finally:

def join(self):
"""Blocks until all items in the Queue have been gotten and processed.

The count of unfinished tasks goes up whenever an item is added to the
to indicate the item was retrieved and all work on it is complete.

When the count of unfinished tasks drops to zero, join() unblocks.
"""
try:
finally:

def qsize(self):
"""Return the approximate size of the queue (not reliable!)."""
self.mutex.acquire()
n = self._qsize()
self.mutex.release()
return n

def empty(self):
"""Return True if the queue is empty, False otherwise (not reliable!)."""
self.mutex.acquire()
n = not self._qsize()
self.mutex.release()
return n

def full(self):
"""Return True if the queue is full, False otherwise (not reliable!)."""
self.mutex.acquire()
n = 0 < self.maxsize == self._qsize()
self.mutex.release()
return n

def put(self, item, block=True, timeout=None):
"""Put an item into the queue.

If optional args 'block' is true and 'timeout' is None (the default),
block if necessary until a free slot is available. If 'timeout' is
a non-negative number, it blocks at most 'timeout' seconds and raises
the Full exception if no free slot was available within that time.
Otherwise ('block' is false), put an item on the queue if a free slot
is immediately available, else raise the Full exception ('timeout'
is ignored in that case).
"""
self.not_full.acquire()
try:
if self.maxsize > 0:
if not block:
if self._qsize() == self.maxsize:
raise Full
elif timeout is None:
while self._qsize() == self.maxsize:
self.not_full.wait()
elif timeout < 0:
raise ValueError("'timeout' must be a non-negative number")
else:
endtime = _time() + timeout
while self._qsize() == self.maxsize:
remaining = endtime - _time()
if remaining <= 0.0:
raise Full
self.not_full.wait(remaining)
self._put(item)
self.not_empty.notify()
finally:
self.not_full.release()

def put_nowait(self, item):
"""Put an item into the queue without blocking.

Only enqueue the item if a free slot is immediately available.
Otherwise raise the Full exception.
"""
return self.put(item, False)

def get(self, block=True, timeout=None):
"""Remove and return an item from the queue.

If optional args 'block' is true and 'timeout' is None (the default),
block if necessary until an item is available. If 'timeout' is
a non-negative number, it blocks at most 'timeout' seconds and raises
the Empty exception if no item was available within that time.
Otherwise ('block' is false), return an item if one is immediately
available, else raise the Empty exception ('timeout' is ignored
in that case).
"""
self.not_empty.acquire()
try:
if not block:
if not self._qsize():
raise Empty
elif timeout is None:
while not self._qsize():
self.not_empty.wait()
elif timeout < 0:
raise ValueError("'timeout' must be a non-negative number")
else:
endtime = _time() + timeout
while not self._qsize():
remaining = endtime - _time()
if remaining <= 0.0:
raise Empty
self.not_empty.wait(remaining)
item = self._get()
self.not_full.notify()
return item
finally:
self.not_empty.release()

def get_nowait(self):
"""Remove and return an item from the queue without blocking.

Only get an item if one is immediately available. Otherwise
raise the Empty exception.
"""
return self.get(False)

# Override these methods to implement other queue organizations
# (e.g. stack or priority queue).
# These will only be called with appropriate locks held

# Initialize the queue representation
def _init(self, maxsize):
self.queue = deque()

def _qsize(self, len=len):
return len(self.queue)

# Put a new item in the queue
def _put(self, item):
self.queue.append(item)

# Get an item from the queue
def _get(self):
return self.queue.popleft()
Queue.Queue
posted @ 2016-01-08 23:06  武沛齐  阅读(...)  评论(... 编辑 收藏