随笔分类 - Data struct
摘要:【概述】 RMQ(Range Minimum/Maximum Query),即区间最值查询,是指这样一个问题:对于长度为n的数列A,回答若干询问RMQ(A,i,j)(i,j=n) break; 9 f[i][j]=max(f[i][j-1],f[i+(1<<(j-1))][j-1]);10 } 查询:1 int query(int s,int e) //查询区间[s,e]的最值2 {3 int k=(int)((log(e-s+1.0)/log(2.0)));4 return max(f[s][k],f[e-(1<<k)+1][k]);5 }
阅读全文
摘要:题目链接:http://202.121.199.212/JudgeOnline/problem.php?id=1716【题意】 1到N的区间,一种操作让编号从a到b的数变为z,但不会低于2,问多次操作后大于2的数减2后的和为多少。【分析】 本来这题可以用线段树模拟过的,但是这里的N非常大,达到109,开个一维数组就会爆内存,更何况开个线段树。 分析题目后不难发现最后的一个操作一定生效,之前的操作如果有涉及之后操作区间的部分就会失效。根据这条性质,从操作的后面往前扫描,更新区间内的元素,如果元素被更新过就忽略,这样根据所有元素更新后的值就能算出结果了。如果用元素标记的方法一来时间复杂了,二来内存
阅读全文
摘要:Splay Tree 是二叉查找树的一种,它与平衡二叉树、红黑树不同的是,Splay Tree从不强制地保持自身的平衡,每当查找到某个节点n的时候,在返回节点n的同时,Splay Tree会将节点n旋转到树根的位置,这样就使得Splay Tree天生有着一种类似缓存的能力,因为每次被查找到的节点都会被搬到树根的位置,所以当80%的情况下我们需要查找的元素都是某个固定的节点,或者是 一部分特定的节点时,那么在很多时候,查找的效率会是O(1)的效率!当然如果查找的节点是很均匀地分布在不同的地方时,Splay Tree的性能就会变得很差了,但Splay Tree的期望的时间复杂度还是O(nlogn.
阅读全文
摘要:我们最常用的二叉堆,是最常用的优先队列,它可以在O(logN)内实现插入和删除最小值操作。但是对于合并两个有序的优先队列,二叉堆就显得力不从心了。 左偏树是一种可并堆(Mergeable Heap), 意思是可以在O(logN)时间内完成两个堆的合并操作。左偏树(Leftist Tree),或者叫左倾树,左式树,左式堆(Leftist Heap),左堆。顾名思义,它好象是向左偏的,实际上它是一种趋于非常不平衡的二叉树结构,但却能够实现对数级的合并时间复杂度。【左偏树的定义】 左偏树(Leftist Tree)是一种可并堆的实现。左偏树是一棵二叉树,它的节点除了和二叉树的节点一样具有左右...
阅读全文

浙公网安备 33010602011771号