# -*- coding: utf-8 -*-
import cv2
import numpy as np
def add_alpha_channel(img):
""" 为jpg图像添加alpha通道 """
b_channel, g_channel, r_channel = cv2.split(img) # 剥离jpg图像通道
alpha_channel = np.ones(b_channel.shape, dtype=b_channel.dtype) * 255 # 创建Alpha通道
img_new = cv2.merge((b_channel, g_channel, r_channel, alpha_channel)) # 融合通道
return img_new
def merge_img(jpg_img, png_img, y1, y2, x1, x2):
""" 将png透明图像与jpg图像叠加
y1,y2,x1,x2为叠加位置坐标值
"""
# 判断jpg图像是否已经为4通道
if jpg_img.shape[2] == 3:
jpg_img = add_alpha_channel(jpg_img)
'''
当叠加图像时,可能因为叠加位置设置不当,导致png图像的边界超过背景jpg图像,而程序报错
这里设定一系列叠加位置的限制,可以满足png图像超出jpg图像范围时,依然可以正常叠加
'''
yy1 = 0
yy2 = png_img.shape[0]
xx1 = 0
xx2 = png_img.shape[1]
# if x1 < 0:
# xx1 = -x1
# x1 = 0
# if y1 < 0:
# yy1 = - y1
# y1 = 0
# if x2 > jpg_img.shape[1]:
# xx2 = png_img.shape[1] - (x2 - jpg_img.shape[1])
# x2 = jpg_img.shape[1]
# if y2 > jpg_img.shape[0]:
# yy2 = png_img.shape[0] - (y2 - jpg_img.shape[0])
# y2 = jpg_img.shape[0]
# 获取要覆盖图像的alpha值,将像素值除以255,使值保持在0-1之间
alpha_png = png_img[yy1:yy2, xx1:xx2, 3] / 255.0
alpha_jpg = 1 - alpha_png
# 开始叠加
for c in range(0, 3):
jpg_img[y1:y2, x1:x2, c] = ((alpha_jpg * jpg_img[y1:y2, x1:x2, c]) + (alpha_png * png_img[yy1:yy2, xx1:xx2, c]))
return jpg_img
if __name__ == '__main__':
# 定义图像路径
img_jpg_path = 'img/3.jpg' # 读者可自行修改文件路径
img_png_path = 'img/3.png' # 读者可自行修改文件路径
# 读取图像
img_jpg = cv2.imread(img_jpg_path, cv2.IMREAD_UNCHANGED)
img_png = cv2.imread(img_png_path, cv2.IMREAD_UNCHANGED)
# 设置叠加位置坐标
x1 = 0
y1 = 0
x2 = x1 + img_png.shape[1]
y2 = y1 + img_png.shape[0]
# 开始叠加
res_img = merge_img(img_jpg, img_png, y1, y2, x1, x2)
# 显示结果图像
# cv2.imshow('result', res_img)
# 保存结果图像,读者可自行修改文件路径
cv2.imwrite('img/res.jpg', res_img)
# 定义程序退出方式:鼠标点击显示图像的窗口后,按ESC键即可退出程序
if cv2.waitKey(0) & 0xFF == 27:
cv2.destroyAllWindows()