NLineInputFormat 案例
一、需求分析
1、文件
hadoop is ok hadoop not ok java is fun php is ok php is pretty python is all go is new
2、需求
对上述文件中每个单词出现的数量进行统计,2行数据一个切片
3、分析
与传统的WordCount相似,但是按行切片,而不是BlockSize
二、代码
前提条件:创建Maven项目,导入依赖,配置log日志
1、Mapper
package com.ln; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Mapper; import java.io.IOException; public class LNMapper extends Mapper<LongWritable, Text, Text, IntWritable> { Text k = new Text(); IntWritable v = new IntWritable(1); @Override protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException { // 1.获取行 String line = value.toString(); // 2.切割 String[] words = line.split("\\s+"); // 3.循环写入 for (String word : words) { k.set(word); context.write(k, v); } } }
2、Reducer
package com.ln; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Reducer; import java.io.IOException; public class LNReducer extends Reducer<Text, IntWritable,Text,IntWritable> { IntWritable v = new IntWritable(); @Override protected void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException { // 1.累加 int sum = 0; for (IntWritable value : values) { sum += value.get(); } // 2. 写入 v.set(sum); context.write(key, v); } }
3、Driver
package com.ln; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.input.NLineInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; import java.io.IOException; public class LNDriver { public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException { args = new String[]{"E:\\a\\input", "E:\\a\\output"}; // 1. 获取job Configuration conf = new Configuration(); Job job = Job.getInstance(conf); // 2. 设置Jar job.setJarByClass(LNDriver.class); // 3. 关联 mapper 和 reducer job.setMapperClass(LNMapper.class); job.setReducerClass(LNReducer.class); // 4. 设置 mapper的输出 kv job.setMapOutputKeyClass(Text.class); job.setMapOutputValueClass(IntWritable.class); // 5. 设置 最终 输出 kv job.setOutputKeyClass(Text.class); job.setOutputValueClass(IntWritable.class); // a. 设置 每个切片中 2 调记录 NLineInputFormat.setNumLinesPerSplit(job, 2); // b、设置 inputFormat 的 格式 job.setInputFormatClass(NLineInputFormat.class); // 6. 设置 输入 输出路径 FileInputFormat.setInputPaths(job, new Path(args[0])); FileOutputFormat.setOutputPath(job, new Path(args[1])); // 7. 提交 job boolean wait = job.waitForCompletion(true); System.exit(wait? 0: 1); } }
注意:
核心代码
1、设置一个切片有多少行数据
NLineInputFormat.setNumLinesPerSplit(job, 2);
2、设置InputFormat的格式
job.setInputFormatClass(NLineInputFormat.class);
结果:
运行完成后:
number of splits:4

浙公网安备 33010602011771号