ybtoj E. 多重前缀和

..
每多一个\(sigma\),答案的多项式项数+1
所以答案是\(K+3\)
WA了2次:

  1. \(1234567891*2>2^{31}\)
  2. 答案是\(K+3\)项不是\(K+2\)
#include<bits/stdc++.h>
#define ll long long
#define int long long
const int p=1234567891;
using namespace std;

inline int ksm(ll a,int b) {
	ll ret=1;
	while(b) {
		if(b&1) ret=ret*a%p;
		a=a*a%p,b>>=1;
	}
	return ret;
}

const int N=205;
int K,n,a,d;
ll pre[N],suf[N],f[N],g[N],y[N],inv[N];

inline int ask(ll *f,int k,int x) {
	if(x<=k) return f[x]; 
	pre[0]=x;
	for(int i=1;i<=k;i++) {
		pre[i]=pre[i-1]*(x-i)%p;
	}
	suf[k]=x-k;
	for(int i=k-1;i>=0;i--) {
		suf[i]=suf[i+1]*(x-i)%p;
	}
	ll ret=0;
	for(int i=0;i<=k;i++) {
		ll s=f[i]*inv[k-i]%p*inv[i]%p;
		if(i) s=s*pre[i-1]%p;
		if(i<k) s=s*suf[i+1]%p;
		if((k-i)&1) s=-s; 
		ret=(ret+s)%p;
	}
	return (ret+p)%p;
}
signed main() {
	inv[0]=inv[1]=1;
	for(int i=2;i<=200;i++) inv[i]=(p-p/i)*inv[p%i]%p;
	for(int i=2;i<=200;i++) inv[i]=inv[i]*inv[i-1]%p;
	int T; scanf("%lld",&T);
	while(T--) {
		scanf("%lld%lld%lld%lld",&K,&a,&n,&d);
		for(int i=1;i<=K+1;i++) {
			f[i]=(f[i-1]+ksm(i,K))%p;
		}
		for(int i=1;i<=K+2;i++) {
			g[i]=(g[i-1]+ksm(i,K+1))%p;
		}
		for(int j=0;j<=K+1;j++) {
			int num=((ll)j*d+a)%p;
			y[j]=(((ll)ask(f,K+1,num)*(num+1)%p-ask(g,K+2,num)+y[j-1])%p+p)%p;
		}
		printf("%lld\n",ask(y,K+1,n));
	}
	return 0;
}
posted @ 2021-04-08 10:09  wwwsfff  阅读(108)  评论(0)    收藏  举报