SparkRDDToDF
package com.sql
import org.apache.spark.rdd.RDD
import org.apache.spark.sql.{DataFrame, Row, SparkSession}
object Demo06RDDtoDF {
def main(args: Array[String]): Unit = {
val spark: SparkSession = SparkSession
.builder()
.appName("Demo06RDDtoDF")
.master("local")
.config("spark.sql.shuffle.partitions", 2)
.getOrCreate()
import spark.implicits._
val stuRDD: RDD[String] = spark.sparkContext.textFile("bigdata19-spark/data/students.txt")
// RDD to DataFrame
// 1、手动指定列名
val stuRddToDF: DataFrame = stuRDD.map(line => {
val splits: Array[String] = line.split(",")
(splits(0), splits(1), splits(2).toInt, splits(3), splits(4))
}).toDF("id", "name", "age", "gender", "clazz")
stuRddToDF.show()
//第2种,使用样例类
val stuRddToDF2: DataFrame = stuRDD.map(line => {
val strings: Array[String] = line.split(",")
StuRDDToDF(strings(0), strings(1), strings(2).toInt, strings(3), strings(4))
}).toDF()
stuRddToDF2.show()
// DF to RDD
// 直接调用.rdd方法即可得到一个 每一条数据都是Row对象的RDD
val rdd: RDD[Row] = stuRddToDF.rdd
}
}
case class StuRDDToDF(id:String,name:String,age:Int,gender:String,clazz:String)