第三周python作业
航空公司客户价值分析
import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sn data=pd.read_csv('../data/air_data.csv') data #数据的描述性统计 explore=data.describe(percentiles=[],include='all').T explore
from datetime import datetime ffp=data['FFP_DATE'].apply(lambda x:datetime.strptime(x,'%Y/%m/%d')) ffp_year=ffp.map(lambda x : x.year) #绘制各年份会员入会人数直方图 fig=plt.figure(figsize=(8,5)) plt.rcParams['font.sans-serif'] = 'SimHei' # 设置中文显示 plt.rcParams['axes.unicode_minus'] = False plt.hist(ffp_year, bins='auto', color='#111111') plt.xlabel('年份') plt.ylabel('入会人数') plt.title('各年份会员入会人数 2020310143049l吕莹') plt.show() plt.close

male=pd.value_counts(data['GENDER'])['男'] female=pd.value_counts(data['GENDER'])['女'] fig = plt.figure(figsize = (7 ,4)) # 设置画布大小 plt.pie([ male, female], labels=['男','女'], colors=['lightskyblue', 'lightcoral'], autopct='%1.1f%%') plt.title('会员性别比例 2020310143049l吕莹') plt.show() plt.close

# 提取属性并合并为新数据集
data_corr = data[['FFP_TIER','FLIGHT_COUNT','LAST_TO_END',
                  'SEG_KM_SUM','EXCHANGE_COUNT','Points_Sum']]
age1 = data['AGE'].fillna(0)
data_corr['AGE'] = age1.astype('int64')
data_corr['ffp_year'] = ffp_year
# 计算相关性矩阵
dt_corr = data_corr.corr(method = 'pearson')
print('相关性矩阵为:\n',dt_corr)
# 绘制热力图
import seaborn as sns
plt.subplots(figsize=(10, 10)) # 设置画面大小 
sns.heatmap(dt_corr, annot=True, vmax=1, square=True, cmap='Blues') 
plt.title('热力图-2019320143321魏沛然-')
plt.show()
plt.close


 
                    
                     
                    
                 
                    
                
 
                
            
         
         浙公网安备 33010602011771号
浙公网安备 33010602011771号