countDownLatch
1.背景:
- countDownLatch是在java1.5被引入,跟它一起被引入的工具类还有CyclicBarrier、Semaphore、concurrentHashMap和BlockingQueue。
- 存在于java.util.cucurrent包下。
2.概念
- countDownLatch这个类使一个线程等待其他线程各自执行完毕后再执行。
- 是通过一个计数器来实现的,计数器的初始值是线程的数量。每当一个线程执行完毕后,计数器的值就-1,当计数器的值为0时,表示所有线程都执行完毕,然后在闭锁上等待的线程就可以恢复工作了。
3.源码
- countDownLatch类中只提供了一个构造器:
//参数count为计数值
public CountDownLatch(int count) { };
- 类中有三个方法是最重要的:
//调用await()方法的线程会被挂起,它会等待直到count值为0才继续执行
public void await() throws InterruptedException { };
//和await()类似,只不过等待一定的时间后count值还没变为0的话就会继续执行
public boolean await(long timeout, TimeUnit unit) throws InterruptedException { };
//将count值减1
public void countDown() { };
CountDownLatch,英文翻译为倒计时锁存器,是一个同步辅助类,在完成一组正在其他线程中执行的操作之前,它允许一个或多个线程一直等待。
闭锁可以延迟线程的进度直到其到达终止状态,闭锁可以用来确保某些活动直到其他活动都完成才继续执行:
确保某个计算在其需要的所有资源都被初始化之后才继续执行;
确保某个服务在其依赖的所有其他服务都已经启动之后才启动;
等待直到某个操作所有参与者都准备就绪再继续执行。
CountDownLatch有一个正数计数器,countDown()方法对计数器做减操作,await()方法等待计数器达到0。所有await的线程都会阻塞直到计数器为0或者等待线程中断或者超时。
闭锁(倒计时锁)主要用来保证完成某个任务的先决条件满足。是一个同步工具类,用来协调多个线程之间的同步。这个工具通常用来控制线程等待,它可以让某一个线程等待直到倒计时结束,再开始执行。
CountDownLatch同样依赖队列同步器AbstractQueuedSynchronizer,其类方法如下:
其内部类Sync同样继承了AQS并重写了tryAcquireShared和tryReleaseShared方法。同时也可以表明CountDownLatch是基于共享锁模式的。
CountDownLatch 的两种典型用法
①某一线程在开始运行前等待n个线程执行完毕。
将 CountDownLatch 的计数器初始化为n :new CountDownLatch(n),每当一个任务线程执行完毕,就将计数器减1 countdownlatch.countDown(),当计数器的值变为0时,在CountDownLatch上 await() 的线程就会被唤醒。一个典型应用场景就是启动一个服务时,主线程需要等待多个组件加载完毕,之后再继续执行。
②实现多个线程开始执行任务的最大并行性。
注意是并行性,不是并发,强调的是多个线程在某一时刻同时开始执行。类似于赛跑,将多个线程放到起点,等待发令枪响,然后同时开跑。做法是初始化一个共享的 CountDownLatch 对象,将其计数器初始化为 1 :new CountDownLatch(1),多个线程在开始执行任务前首先 coundownlatch.await(),当主线程调用 countDown() 时,计数器变为0,多个线程同时被唤醒。
4.示例
示例一:
public class CountDownLatchTest {
public static void main(String[] args) {
final CountDownLatch latch = new CountDownLatch(2);
System.out.println("主线程开始执行…… ……");
//第一个子线程执行
ExecutorService es1 = Executors.newSingleThreadExecutor();
es1.execute(new Runnable() {
@Override
public void run() {
try {
Thread.sleep(3000);
System.out.println("子线程:"+Thread.currentThread().getName()+"执行");
} catch (InterruptedException e) {
e.printStackTrace();
}
latch.countDown();
}
});
es1.shutdown();
//第二个子线程执行
ExecutorService es2 = Executors.newSingleThreadExecutor();
es2.execute(new Runnable() {
@Override
public void run() {
try {
Thread.sleep(3000);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println("子线程:"+Thread.currentThread().getName()+"执行");
latch.countDown();
}
});
es2.shutdown();
System.out.println("等待两个线程执行完毕…… ……");
try {
latch.await();
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println("两个子线程都执行完毕,继续执行主线程");
}
}
示例二:
public class TestCountDownLatch {
public static void main(String[] args){
//CountDownLatch 为唯一的、共享的资源
final CountDownLatch latch = new CountDownLatch(5);
LatchDemo latchDemo = new LatchDemo(latch);
long begin = System.currentTimeMillis();
for (int i = 0; i <5 ; i++) {
new Thread(latchDemo).start();
}
try {
//多线程运行结束前一直等待
latch.await();
} catch (InterruptedException e) {
e.printStackTrace();
}
long end = System.currentTimeMillis();
System.out.println("耗费时间:"+(end-begin));
}
}
class LatchDemo implements Runnable{
private CountDownLatch latch;
public LatchDemo(CountDownLatch latch){
this.latch=latch;
}
public LatchDemo(){
super();
}
@Override
public void run() {
//当前对象唯一,使用当前对象加锁,避免多线程问题
synchronized (this){
try {
for (int i = 0; i < 50000; i++) {
if (i%2==0){
System.out.println(i);
}
}
}finally {
//保证肯定执行
latch.countDown();
}
}
}
}
5.简单总结:
内部类Sync同样继承AQS;
AQS的state代表count;
初始化使用计数器count;
count代表多个线程执行或者某个操作执行次数;
countDown()方法将会将count-1;
count为0将会释放所有等待线程;
await方法将会阻塞直到count为0;
CountDownLatch是一次性的,计数器的值只能在构造方法中初始化一次,之后没有任何机制再次对其设置值,当CountDownLatch使用完毕后,它不能再次被使用。
count不为0,但是等待时间过去将会返回false。
开关锁应用;
问题分解应用–并行性;
参考了如下文档:

浙公网安备 33010602011771号