Spark设计与运行原理,基本操作

1.Spark已打造出结构一体化、功能多样化的大数据生态系统,请用图文阐述Spark生态系统的组成及各组件的功能

目前,Spark生态系统已经发展成为一个可应用于大规模数据处理的统一分析引擎,它是基于内存计算的大数据并行计算框架,适用于各种各样的分布式平台系统。在Spark生态圈中包含了Spark SQL、Spark Streaming、GraphX、MLlib等组件,这些组件可以非常容易地把各种处理流程整合在一起,而这样的整合,在实际数据分析过程中是很有意义的。不仅如此,Spark的这种特性还大大减轻了原先需要对各种平台分别管理的依赖负担。下面,通过一张图描述Spark的生态系统,具体如下图1所示

 

 Spark生态系统主要包含Spark Core、Spark SQL、Spark Streaming、MLib、GraphX以及独立调度器

2.请阐述Spark的几个主要概念及相互关系:

   RDD,DAG,Application, job,stage,task,Master, worker, driver,executor,Claster Manager

1. RDD之间的依赖(以分区为说明)

窄依赖:每一个父RDD的Partition中的数据,最多被子RDD的一个Partition使用(单分区 -> 单分区);

窄依赖在源码里是OneToOneDependency

宽依赖:同一个父RDD的Partition中的数据,被多个子RDD的Partition使用(单分区 -> 多分区),会引起shuffle,数据打乱重组;典型的宽依赖是ByKey的各种算子,依据key进行suffle。

画一张简单的示意图来看宽窄依赖的区别:


2. RDD任务划分原理

窄依赖不会shuffle,所有的RDD分区转换可以并行进行,所以各种task可以在同一个stage中进行;

宽依赖由于会产生shuffle,上一个stage没完,数据不会进行shuffle到下一个stage,下一个stage只能等待,所以宽依赖是划分阶段的依据。

RDD任务切分级别为:Application、Job、Stage、Task

(1)Application:初始化一个SparkContext即生成一个Application;

(2)Job:一个action算子生成一个Job;

(3)Stage:遇到一个宽依赖划分一个Stage;

(4)Task:一个分区对应一个task,将Stage划分的结果发送到不同的Executor中执行。

关系:

1个Application中至少有1个Job;

1个Job中依据宽窄依赖划分至少有一个Stage(至少有一个ResultStage);

1个Stage中依据分区至少有一个Task(至少一个分区)。

ps:shuffle之后会产生新的Stage,重新分区


3. Spark中RDD执行阶段划分示意图

通过示意图,分析Spark中任务如何划分,阶段如何划分,依赖关系是怎样的,以及最后如何执行的。

 

 

eg:跑一个wordCount的小demo,Spark阶段划分如下
(1)首先通过sc.textfile从文件中读取数据到Partition0和1中;
(2)然后通过flatMap算子进行扁平化,分区不改变;
(3)做统计转换,用map算子,A -> (A,1)变成了元组的形式,分区依然没变;
(4)reduceByKey,相同的key聚合在一起,分区数据被打乱shuffle重组;
(5)collect
整个过程是 窄依赖 -> shuffle -> 宽依赖
调用行动算子的时候,会运行作业(JOB),进行阶段(Stage)的划分以及提交阶段(SubmitStage)后的任务(Task)划分,最后提交任务(submitTask)。

(1)划分阶段(查找shuffle)
提交作业首先划分阶段,首先一定会有一个ResultStage;
然后再看之前有没有其他阶段,根据血缘关系从最后一个RDD往前看,查找宽依赖,即shuffleDependency;
创建ShuffleMapStage,与shuffle后的RDD区别开,
这样阶段划分完毕,形成2个阶段:ShuffleMapStage -------shuffle-----------ResultStage
(2)提交ShuffleMapStage阶段,划分任务
提交ResultStage阶段前,会找上一级阶段,也就是ShuffleMapStage;
接着看ShuffleMapStage有没有上一级阶段,发现没有,开始对ShuffleMapStage阶段划分task;
task数取决于分区数,这里分了2个区,所以划分了2个Task,并行计算,提交给Executor执行;
(3)shuffle等待
shuffle等待上一个阶段出结果,源码中waitChildStage;
(4)提交ResultStage阶段
再从ResultStage开始依次提交各个阶段。
所以总流程是:
划分Stage(从后往前查找shuffle)-> 划分任务Task -> 提交阶段(从前往后提交,shuffle等待)

3.在PySparkShell尝试以下代码,观察执行结果,理解sc,RDD,DAG。请画出相应的RDD转换关系图。

>>> sc

>>> lines = sc.textFile("file:///home/hadoop/bigdatahomework/english.txt")

>>> lines

>>> words=lines.flatMap(lambda line:line.split())

>>> words

>>> wordKV=words.map(lambda word:(word,1))

>>> wordKV

>>> lineKV=lines.map(lambda line:(1,line))

>>> lineKV

>>> lines.foreach(print)

>>> words.foreach(print)

>>>wordKV.foreach(print)

>>>lineKV.foreach(print)

自己生成sc

 

 

 

posted @ 2022-03-08 09:30  王俊鹏  阅读(97)  评论(0)    收藏  举报