[SDOI2014]数表 题解

题目链接:[SDOI2014]数表
题解:我们先忽略\(a\)的限制,仅考虑\(n,m\)两个限制。我们令\(g(x)\)为能整除\(x\)的所有自然数之和。
那么可以列出式子:

\[\sum_{i=1}^{n} \sum_{j=1}^{m} g(\gcd(i,j)) \]

\[\sum_{i=1}^{n} \sum_{j=1}^{m} \sum_{d|i,d|j} [\gcd(i,j)==d] \times g(d) \]

\[\sum_{d=1}^{\min(n,m)}g(d)\sum_{i=1}^{\left \lfloor \frac{n}{d} \right \rfloor} \sum_{j=1}^{\left \lfloor \frac{m}{d} \right \rfloor} [\gcd(i,j)==1] \]

\[\sum_{d=1}^{\min(n,m)}g(d)\sum_{i=1}^{\left \lfloor \frac{n}{d} \right \rfloor} \sum_{j=1}^{\left \lfloor \frac{m}{d} \right \rfloor} \sum_{k|i,k|j} \mu(k) \]

\[\sum_{d=1}^{\min(n,m)}g(d)\sum_{k=1}^{\min(\left \lfloor \frac{n}{d} \right \rfloor,\left \lfloor \frac{m}{d} \right \rfloor)}\mu(k) \sum_{i=1}^{\left \lfloor \frac{n}{dk}\right \rfloor} \sum_{j=1}^{\left \lfloor \frac{m}{dk} \right \rfloor } 1 \]

\[\sum_{d=1}^{\min(n,m)}g(d)\sum_{k=1}^{\min(\left \lfloor \frac{n}{d} \right \rfloor,\left \lfloor \frac{m}{d} \right \rfloor)}\mu(k) \left \lfloor \frac{n}{dk} \right \rfloor \left \lfloor \frac{m}{dk} \right\rfloor \]

\(T=d \times k\)

则原式可化为:

\[\sum_{T=1}^{\min(n,m)}\left \lfloor \frac{n}{T} \right \rfloor \left \lfloor \frac{m}{T} \right \rfloor \sum_{d|T} g(d) \mu(\frac{T}{d}) \]

然后这个可以数论分块处理,对于\(a\)的限制,离线排序用树状数组处理即可。

posted @ 2020-01-22 12:55  with_hope  阅读(113)  评论(0)    收藏  举报