import pickle
import statsmodels.api as sm
import pandas as pd
# 加载关键参数
with open('linear_regression_params.pkl', 'rb') as f:
loaded_params = pickle.load(f)
data = pd.read_csv('data.csv')
# 使用加载的参数进行预测
df_new = data[['LB', 'HS', '分钟HS', 'ASKBID', 'ZF', '分钟LB', '分钟ZF', 'nowMA5', '涨停次数30天',
'ZT_CS_60', 'NOWLOWZF', '昨日涨幅', '开盘涨幅', 'big_order', 'vol_inc_cnt',
'流通市值', '相对位置', '相对位置2', 'zjs', 'zf5js', 'ztjs', 'onemin_num',
'ask_money', 'bid_money', '平均笔数', '分钟秒比', 'GUESS正大单', 'GUESS大单率',
'GUESS大单个数', 'GUESS大单pos个数', 'askmoney_div_平均笔数', 'totalmoney_div_成交笔数',
'nowma10', 'pos_div_askallmoney', 'ma5_c', 'ma5_v', 'ASK20', 'ASK10',
'now_low_onemin', 'now_high_onemin', 'allask_cntrb', 'avgask_cntrb',
'avgbid_cntrb', '板块涨家数比例', '板块排名', '股票在板块中的排名', '板块股票个数']]
predictions = sm.add_constant(df_new).dot(loaded_params)