java编程思想魔鬼数字
穷举法
public class practice {
public static void main(String[] args) {
int a,b,c,d;
index:for(int num=1000;num<=9999;num++) {
public class practice {
public static void main(String[] args) {
int a,b,c,d;
index:for(int num=1000;num<=9999;num++) {
a=num/1000;b=num/100%10;c=num/10%10; d=num%10;
if(num%100!=0) {
if((t(a)+b)*(t(c)+d)==num||(t(a)+b)*(c+t(d))==num||(a+t(b))*(t(c)+d)==num||(a+t(b))*(c+t(d))==num) {
System.out.println(num);
continue index;
}else
if((t(a)+c)*(t(d)+b)==num||(t(a)+c)*(d+t(b))==num||(a+t(c))*(t(d)+b)==num||(a+t(c))*(d+t(b))==num) {
System.out.println(num);
continue index;
}else
if((t(a)+d)*(t(c)+b)==num||(t(a)+d)*(c+t(b))==num||(a+t(d))*(t(c)+b)==num||(a+t(d))*(c+t(b))==num) {
System.out.println(num);
continue index;
}
}
}
}
private static int t(int a ) {
return a*10;
}
if(num%100!=0) {
if((t(a)+b)*(t(c)+d)==num||(t(a)+b)*(c+t(d))==num||(a+t(b))*(t(c)+d)==num||(a+t(b))*(c+t(d))==num) {
System.out.println(num);
continue index;
}else
if((t(a)+c)*(t(d)+b)==num||(t(a)+c)*(d+t(b))==num||(a+t(c))*(t(d)+b)==num||(a+t(c))*(d+t(b))==num) {
System.out.println(num);
continue index;
}else
if((t(a)+d)*(t(c)+b)==num||(t(a)+d)*(c+t(b))==num||(a+t(d))*(t(c)+b)==num||(a+t(d))*(c+t(b))==num) {
System.out.println(num);
continue index;
}
}
}
}
private static int t(int a ) {
return a*10;
}
}
下面是网上看到一个写的比较简单的代码
package theThird;
import java.awt.List;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.ArrayList;
import java.util.Arrays;
public class practice {
public static void main(String[] args) {
practice t = new practice();
t.vampireNumber();
}
public void vampireNumber() {
ArrayList<Integer> list=new ArrayList<Integer>();
for (int i = 10; i < 100; i++) {
for (int j = 10; j < 100; j++) {
int product = i * j;
if (product > 1000 && product < 10000 && product % 100 != 0 && isEqual(product, i, j)) {
if(!list.contains(product))
list.add(product);
}
}
}
for(Integer x:list) {
System.out.println(x);
}
}
public boolean isEqual(int product, int i, int j) {
char[] num1 = ("" + product).toCharArray();
char[] num2 = ("" + i + j).toCharArray();
Arrays.sort(num1);
Arrays.sort(num2);
return Arrays.equals(num1, num2);
}
}
public static void main(String[] args) {
practice t = new practice();
t.vampireNumber();
}
public void vampireNumber() {
ArrayList<Integer> list=new ArrayList<Integer>();
for (int i = 10; i < 100; i++) {
for (int j = 10; j < 100; j++) {
int product = i * j;
if (product > 1000 && product < 10000 && product % 100 != 0 && isEqual(product, i, j)) {
if(!list.contains(product))
list.add(product);
}
}
}
for(Integer x:list) {
System.out.println(x);
}
}
public boolean isEqual(int product, int i, int j) {
char[] num1 = ("" + product).toCharArray();
char[] num2 = ("" + i + j).toCharArray();
Arrays.sort(num1);
Arrays.sort(num2);
return Arrays.equals(num1, num2);
}
}
通过两个两位数的所有穷举,就相当于那四位数每一位都重复的全部可能,不用再考虑那个四位数的各种组合,因为各种组合都出现了,每一位都重复了0到9
所以所有的都会出现,开始的时候这位兄弟并没有排出重复项,我加了个去重的功能
当要求更高位数的运算时,显然我那种方法难度比较大

浙公网安备 33010602011771号