(C语言)二叉树非递归遍历前序和中序(数据结构十四)
1.数据类型定义
在代码中为了清楚的表示一些错误和函数运行状态,我们预先定义一些变量来表示这些状态。在head.h头文件中有如下定义:
//定义数据结构中要用到的一些变量和类型 #ifndef HEAD_H #define HEAD_H #include <stdio.h> #include <malloc.h> #include <stdlib.h> #include <math.h> #define TRUE 1 #define FALSE 0 #define OK 1 #define ERROR 0 #define INFEASIBLE -1 #define OVERFLOW -2 //分配内存出错 typedef int Status; //函数返回值类型 typedef int ElemType; //用户定义的数据类型 #endif
2.遍历过程中用到的栈结构代码如下
LinearStack.h中
#ifndef LINEAR_STACK
#define LINEAR_STACK
#include "head.h"
#define STACK_INIT_SIZE 100
#define STACK_INCREMENT 10
typedef pBiNode Type;
typedef struct Stack{
Type *base; //栈底
Type *top; //栈顶
int size; //栈大小
}Stack,*pStack;
//初始化栈
Status InitStack(pStack &S){
S=(pStack)malloc(sizeof(Stack));
Type* p=(Type*)malloc(STACK_INIT_SIZE*sizeof(Type));
if(!p) return OVERFLOW;
S->base=p;
S->top=p;
S->size=STACK_INIT_SIZE;
return OK;
}
Status freeStack(pStack &S){
free(S);
S=NULL;
return OK;
}
//销毁栈
Status DestroyStack(pStack &S){
free(S->base);
S->base=NULL;
S->top=NULL;
freeStack(S);
return OK;
}
//清空栈
Status ClearStack(pStack &S){
S->top=S->base;
return OK;
}
//栈是否为空
Status StackEmpty(pStack S){
return S->top==S->base;
}
//栈长度
int StackLength(pStack S){
return S->top-S->base;
}
//得到栈顶数据级e
Status GetTop(pStack S,Type &e){
e=*(S->top-1);
return OK;
}
//入栈
Status Push(pStack &S,Type e){
if(StackLength(S)>=S->size)
S->base=(Type*)realloc(S->base,(S->size+STACK_INCREMENT)*sizeof(Type));
if(!S->base) return OVERFLOW;
S->top=S->base+StackLength(S);
S->size+=STACK_INCREMENT;
*S->top++=e;
return OK;
}
//出栈
Status Pop(pStack &S,Type &e){
if(StackLength(S)<1) return ERROR;
e=*--S->top;
return OK;
}
// Status print(Type e){
// printf("%d ",e);
// return OK;
// }
//用vistit遍历栈
Status StackTraverse(pStack S,Status(*visit)(Type)){
while (S->top>S->base)
(*visit)(*--S->top);
return OK;
}
// Status printStack(pStack S){
// StackTraverse(S,print);
// return OK;
// }
#endif
3.二叉树结构代码如下#ifndef BITREE_H
#define BITREE_H
#include "head.h"
typedef struct BiNode{
ElemType data;
struct BiNode *left,*right;
}BiNode,*pBiNode;
Status InsertRight(pBiNode &root,ElemType e);
Status InsertLeft(pBiNode &root,ElemType e);
Status InitBiTree(pBiNode &tree){
tree=(pBiNode)malloc(sizeof(BiNode));
if(!tree) return OVERFLOW;
tree->data=-999999;
tree->left=NULL;
tree->right=NULL;
return OK;
}
Status BiTreeEmpty(pBiNode root){
if(root==NULL) return ERROR;
return root->left==root->right && root->data==-999999;
}
Status HasNoNode(pBiNode root){
if(root==NULL) return ERROR;
return root->left==root->right ;
}
Status CreatTreeNode(pBiNode &node,ElemType e){
node=(pBiNode)malloc(sizeof(BiNode));
if(!node) return OVERFLOW;
node->data=e;
node->left=NULL;
node->right=NULL;
return OK;
}
Status InsertRight(pBiNode &root,ElemType e){
if(root->right==NULL){
if(e>root->data){
pBiNode p;
CreatTreeNode(p,e);
root->right=p;
return OK;
}else{
pBiNode p;
CreatTreeNode(p,e);
root->left=p;
return OK;
}
}else{
e>root->data? InsertRight(root->right,e):InsertLeft(root,e);
}
}
Status InsertLeft(pBiNode &root,ElemType e){
if(root->left==NULL){
if(e>root->data){
pBiNode p;
CreatTreeNode(p,e);
root->right=p;
return OK;
}else{
pBiNode p;
CreatTreeNode(p,e);
root->left=p;
return OK;
}
}else{
e<=root->data?InsertLeft(root->left,e):InsertRight(root,e);
}
}
Status InsertTree(pBiNode &root,ElemType e){
if(BiTreeEmpty(root)){
root->data=e;
return true;
}
if(e>root->data){
InsertRight(root,e);
}else{
InsertLeft(root,e);
}
}
Status CreateBiTree(pBiNode &root,ElemType *a,int n){
for (int i=0;i<n;i++)
{
InsertTree(root,a[i]);
}
return true;
}
Status print(ElemType e ){
printf("%d ",e);
return true;
}
Status PreOrderTraverse(pBiNode root,Status(*p)(int)){
if(root){
(*p)(root->data);
PreOrderTraverse(root->left,p);
PreOrderTraverse(root->right,p);
}
return OK;
}
Status MiddleOrderTraverse(pBiNode root,Status(*p)(int)){
if(root){
MiddleOrderTraverse(root->left,p);
(*p)(root->data);
MiddleOrderTraverse(root->right,p);
}
return OK;
}
Status AfterOrderTraverse(pBiNode root,Status(*p)(int)){
if(root){
AfterOrderTraverse(root->left,p);
AfterOrderTraverse(root->right,p);
(*p)(root->data);
}
return OK;
}
Status ClearBiTree(pBiNode &root){
if(root){
ClearBiTree(root->left);
ClearBiTree(root->right);
free(root);
root==NULL;
}
return OK;
}
#endif
4.遍历测试如下
#include "BiTree.h"
#include "LinearStack.h"
//非递归中序
void MiddleTraverse(pBiNode Root){
pStack S;
InitStack(S);
pBiNode p=Root;
while(p||!StackEmpty(S)){
if(p){
Push(S,p);
p=p->left;
}else{
Pop(S,p);
printf("%d ",p->data);
p=p->right;
}
}
}
//非递归前序
void PerTraverse(pBiNode Root){
pStack S;
InitStack(S);
pBiNode p=Root;
while(p||!StackEmpty(S)){
if(p){
printf("%d ",p->data);
Push(S,p);
p=p->left;
}else{
Pop(S,p);
p=p->right;
}
}
}
void main(){
ElemType a[14]={100,50,200,40,30,45,60,55,61,200,150,300,250,400};
pBiNode root;
InitBiTree(root);
CreateBiTree(root,a,14);
printf("前序:");
PreOrderTraverse(root,print);
printf("\n中序:");
MiddleOrderTraverse(root,print);
printf("\n后序:");
AfterOrderTraverse(root,print);
printf("\n非递归前序:");
PerTraverse(root);
printf("\n非递归中序:");
MiddleTraverse(root);
ClearBiTree(root);
}
5.插入的二叉树
前序:100 50 40 30 45 60 55 61 200 150 300 250 400 中序:30 40 45 50 55 60 61 100 150 200 250 300 400 后序:30 45 40 55 61 60 50 150 250 400 300 200 100 非递归前序:100 50 40 30 45 60 55 61 200 150 300 250 400 非递归中序:30 40 45 50 55 60 61 100 150 200 250 300 400
浙公网安备 33010602011771号