详细介绍:Leetcode 3699. Number of ZigZag Arrays I
1. 解题思路
一个动态规划。就是这一题思路上就
大家定义两个长度为r − l + 1 r-l+1r−l+1数组u ⃗ \vec{u}u和d ⃗ \vec{d}d,分别表示当数组个数为n nn时,第一个元素为i ii且下一个元素的方向为向上和向下时的取法的个数。
则易知有迭代公式:
{
u
n
+
1
i
=
∑
j
=
i
+
1
r
d
n
j
d
n
+
1
i
=
∑
j
=
l
i
−
1
u
n
j
\left\{ \begin{aligned} u_{n+1}^i &= \sum\limits_{j=i+1}^{r} d_{n}^{j} \\ d_{n+1}^i &= \sum\limits_{j=l}^{i-1} u_{n}^{j} \end{aligned} \right.⎩⎨⎧un+1idn+1i=j=i+1∑rdnj=j=l∑i−1unj
当然,直接进行迭代的话算法复杂度将会是O ( N 3 ) O(N^3)O(N3)通过,不过考虑到其中有两个累加管理,因此,我们能够通过累积数组的方式省略掉其中一次循环,整体的算法复杂度就是O ( N 2 ) O(N^2)O(N2)。
2. 代码实现
给出python代码达成如下:
MOD = 10**9 + 7
class Solution:
def zigZagArrays(self, n: int, l: int, r: int) -> int:
d = r-l
up, down = [1 for _ in range(d)] + [0], [0] + [1 for _ in range(d)]
for i in range(n-2, -1, -1):
prev_up = [0 for _ in range(d+1)]
valid = 0
for j in range(d-1, -1, -1):
valid = (valid + down[j+1]) % MOD
prev_up[j] = valid
prev_down = [0 for _ in range(d+1)]
valid = 0
for j in range(1, d+1):
valid = (valid + up[j-1]) % MOD
prev_down[j] = valid
up, down = prev_up, prev_down
return (sum(up) + sum(down)) % MOD
提交代码评测得到:耗时10691ms,占用内存18.52MB。
浙公网安备 33010602011771号