欧拉函数
\[n = \displaystyle\sum_{d \mid n} \varphi(d)
\]
证明:
\[\forall n \in \mathbb{N}_+, f(x) = \displaystyle\sum_{i = 1}^n [\gcd(i, n) = x]
\]
\[\because \gcd(i, n) = x
\]
\[\therefore \gcd(\displaystyle\frac{i}{x}, \displaystyle\frac{n}{x}) = 1
\]
\[\therefore f(x) = \varphi(\displaystyle\frac{n}{x})
\]
\[\because \forall i \in [1, n] \bigcap Z, 1 \leq \gcd(i, n) \leq n
\]
\[\therefore n = \displaystyle\sum_{i = 1}^{n} f(x)
\]
\[\because \forall i \nmid n, f(i) = 0
\]
\[\therefore n = \displaystyle\sum_{d \mid n} f(d) = \displaystyle\sum_{d \mid n} \varphi(\displaystyle\frac{n}{d}) = \displaystyle\sum_{d \mid n} \varphi(d)
\]
证毕.