MO 复健
不定期传一些最近写的 MO 题.
-
如图,在锐角 \(\triangle ABC\) 中,\(O, H\) 分别是外心和垂心,\(K\) 是 \(AH\) 的中点,\(P\) 在 \(AC\) 上,且满足 \(\angle BKP = 90^\circ\).求证:\(OP \parallel BC\).

证明:

如图,作直线 \(BH\) 交 \(AC\) 于点 \(D\),连结 \(KD\);分别过 \(O, P\) 作 \(BC\) 的垂线交于 \(E, F\).
由 \(\angle BKP = \angle BDP = \angle BFP\),知 \(B, F, P, D, K\) 五点共圆.在 \(\text{Rt}\triangle HDA\) 中,\(KD = KH = \displaystyle \frac{AH}{2}\),\(\angle KDA = \angle KAD = 90^\circ - \angle C\),故 \(\angle KDP = 90^\circ + \angle C\).
又 \(\angle CPF = 90^\circ - \angle C\),知 \(\angle DPF = 90^\circ + \angle C = \angle KDP\),结合四点共圆,知四边形 \(PDKF\) 为等腰梯形.由此,\(PF = DK = \displaystyle \frac{AH}{2}\).又 \(OE = R \cdot \cos A, AH = AB \cdot \cos A \cdot \sec (90^\circ - C) = 2R \cos A \Rightarrow OE = \displaystyle \frac{AH}{2} = PF\),\(OE \perp BC, PF \perp BC \Rightarrow OE \parallel PF\),知四边形 \(OEFP\) 是平行四边形,于是 \(OP \parallel BC\),得证.
-
如图,\(\triangle ABC\) 内接于 \(\odot O\),\(AA'\) 为 \(BC\) 边上的高,\(X\) 在射线 \(AA'\) 上,\(\angle BAC\) 的平分线交 \(\odot O\) 于 \(D\),\(N\) 在 \(XD\) 的延长线上,且满足 \(ON \parallel AD\),\(M\) 是 \(XD\) 的中点.求证:\(\angle BAM = \angle CAN\).

证明:

如图,连结 \(AO\) 并延长交 \(\odot O\) 于点 \(E\),连结 \(OD, NE, AN\).
由于 \(\angle BAX = 90^\circ - \angle B = \angle CAO\),故 \(AD\) 平分 \(\angle XAE\).又 \(OD \parallel AX, ON \parallel AD\),得 \(ON\) 平分 \(\angle DOE\).又 \(OD = OE\),\(N\) 在角平分线上,知 \(\triangle ODN \cong \triangle OEN\).而 \(AX \parallel OD\),知 \(\triangle AXD \sim \triangle ODN \Rightarrow \triangle AXD \sim \triangle OEN \Rightarrow \displaystyle \frac{AX}{XD} = \frac{OE}{EN} \Rightarrow \frac{AX}{XM} = \frac{AE}{EN}\).又 \(\angle AXD = \angle ODN = \angle OEN\),知 \(\triangle AXM \sim \triangle AEN\),于是 \(\angle XAM = \angle EAN \Rightarrow \angle BAM = \angle CAN\).证毕.
-
\(a, b, c \in R_+\),\(abc = 1\),求证:\((a + b)(b + c)(c + a) \geq 4(a + b + c - 1)\).
证明:设 \(p = a + b + c, q = ab + bc + ca, r = abc = 1\).则要证 \(pq - r \geq 4(p - 1)\).
由 \(r = 1\),只需证 \(pq + 3 \geq 4p\),又由舒尔不等式,\(q^2 \geq 3pr, r = 1 \Rightarrow q \geq \sqrt{3p}\),只需证 \(p\sqrt{3p} + 3 \geq 4p\),整理平方得 \(3p^3 - 16p^2 + 24p - 9 \geq 0\).设 \(f(x) = 3x^3 - 16x^2 + 24x - 9 = (x - 3)(3x^2 - 7x + 3)\),则 \(f(3) = 0\),\(f'(x) = 9x^2 - 32x + 24\),当 \(x \geq 3\) 时,易知 \(f'(x) \geq 0\),于是 \(f(x) \geq 0\),那么只需证 \(p \geq 3\).而 \(p^2 \geq 3q \geq 3\sqrt{3p} \Rightarrow p \geq 3\),得证.
-
如图,\(\triangle ABC\) 中,\(AB = AC\),\(D\) 为 \(BC\) 中点,过点 \(B\) 的 \(\odot O\) 分别交 \(AB, AD, BC\) 于 \(L, M, N\),\(MN\) 交 \(AC\) 于 \(K\),过 \(C\) 作 \(LN\) 的平行线分别交 \(AD, KL\) 于 \(S, T\),证明:\(M, T, B, S\) 共圆.

证明:

如图,连结 \(MT, MB, MC, ML\).易知 \(MB = MC\).
\(\angle LMN = 180^\circ - \angle LBN = 180^\circ - (90^\circ - \displaystyle \frac{\angle A}{2}) = 90^\circ + \frac{\angle A}{2}\),故 \(M\) 是 \(\triangle ALK\) 的内心,于是 \(\angle CKN = \angle AKM = \angle MKL, \angle CNK = \angle ALM = \angle MLK\),故 \(\triangle KCN \sim \triangle KML\),则有 \(\triangle KMC \sim \triangle KLN\),所以 \(\angle KMC = \angle KLN = \angle KTC(LN \parallel TC)\),故 \(K, M, T, C\) 四点共圆.
\(\angle MTC = \angle NKC = \angle AKM = \angle MKT = \angle MCT \Rightarrow MT = MC = MB\),故 \(M\) 是 \(\triangle TBC\) 的外心,\(\angle BTS = \angle BTC = \displaystyle \frac{\angle BMC}{2} = \angle BMS\),故 \(M, T, B, S\) 四点共圆.证毕.
-
如图,完全四边形 \(ABCDEF\) 中,\(\angle A = 90^\circ\),点 \(O\) 为 \(\triangle BCE\) 外心,\(\triangle CDF\) 的外接圆 \(\odot P\) 交 \(OD\) 于另一点 \(K\),证明:\(\angle FDB = \angle FKB\).

证明:

如图,作出 \(\triangle CBE\) 的外接圆,交 \(\odot P\) 于点 \(M\),\(OD\) 交 \(BF\) 于点 \(G\),连结图中线段.
由密克定理,\(M, C, B, E\)、\(M, F, A, B\) 分别四点共圆.\(\angle MPF = 2\angle MDF = 2\angle MEA = 2\angle MEB = \angle MOB\),又 \(MP = FP, MO = BO\),故 \(\triangle MFP \sim \triangle MBO\),于是 \(\triangle PMO \sim \triangle FMB\),故 \(\angle PMO = \angle FMB = 180^\circ - \angle A = 90^\circ\).于是 \(\odot O, \odot P\) 正交,\(OC\) 是 \(\odot P\) 的切线.
由圆幂定理,\(OC^2 = OK \cdot OD\),又 \(OB = OC\),知 \(OB^2 = OK \cdot OD\),于是 \(OB\) 是 \(\triangle KDB\) 的切线,有 \(\angle OBK = \angle BDK\).
\(\angle KBF - \angle DBF = \angle BFD + \angle BDF - \angle BFK - \angle BKF\).而 \(\angle KBF - \angle DBF = \angle OBC - \angle OBK - \angle DBF = (90^\circ - \angle BMC) - \angle KDB - \angle DBF = \angle FMC - \angle FGD = \widehat{FC} - \widehat{FD} + \widehat{KC} = \widehat{CD} - \widehat{KC} = \angle CFD - \angle CFK = \angle BFD - \angle BFK\),带回前式知 \(\angle BDF - \angle BKF = 0\),于是 \(\angle FDB = \angle FKB\),证毕.
-
\(a, b, c \in R_+\),求证:\(\displaystyle \sum \frac{1}{a^3 + b^3 + abc} \leq \frac{1}{abc}\).
证明:原式 \(\Leftrightarrow \displaystyle \sum \frac{abc}{a^3 + b^3 + abc} \leq 1 \Leftrightarrow \sum \frac{1}{\frac{a^2}{bc} + \frac{b^2}{ac} + 1} \leq 1\),令 \(x = \displaystyle \frac{a^2}{bc}, y = \frac{b^2}{ac}, z = \frac{c^2}{ab}\),则 \(xyz = 1\),原式 \(\Leftrightarrow \displaystyle \sum \frac{1}{x + y + 1} \leq 1\),两边通分并整理得原式 \(\Leftrightarrow \displaystyle \sum xy(x + y) - 2\sum x + y \geq 0 \Leftrightarrow \sum (xy - 1)(x + y) \geq 0\).不妨设 \(x \geq y \geq z\),显然 \(x + y \geq x + z \geq y + z, xy - 1 \geq xz - 1 \geq yz - 1\).对上式使用排序不等式,有 \(\displaystyle \sum(xy - 1)(x + y) \geq \frac{2}{3}(\sum xy - 3)\sum x\),而 \(\displaystyle \sum xy - 3 \geq 3\sqrt[3]{x^2y^2z^2} - 3 = 0\),\(\displaystyle \sum x \geq 0\),有 \(\displaystyle \sum(xy - 1)(x + y) \geq \frac{2}{3}(\sum xy - 3)\sum x \geq 0\),故原式成立,证毕.
-
\(x, y, z \in R_+\),\(xyz \geq 1\),求证:\(\displaystyle \sum \frac{x^5 - x^2}{x^5 + y^2 + z^2} \geq 0\).
证明:
引理 \(1\):对 \(x, y > 0\),有 \(x^4 + y^4 \geq x^3y + xy^3\).
引理 \(1\) 证明:\(x^4 + y^4 \geq x^3y + xy^3 \Leftrightarrow x^4 + y^4 - x^3y - xy^3 \geq 0 \Leftrightarrow (x - y)^2(x^2 + xy + y^2) \geq 0\) 显然成立,得证.
引理 \(2\):对 \(x, y, z > 0\),有 \(x^4 + y^3z + yz^3 \geq xyz(x + y + z)\)
引理 \(2\) 证明:
\[x^4 + y^3z + yz^3 = (2 \cdot \frac{x^4}{4} + \frac{y^3z}{4} + \frac{yz^3}{4}) + (2 \cdot \frac{x^4}{8} + 5 \cdot \frac{y^3z}{8} + \frac{yz^3}{8}) + (2 \cdot \frac{x^4}{8} + \frac{y^3z}{8} + 5 \cdot \frac{yz^3}{8}) \\ \geq 4\sqrt[4]{\frac{x^8y^4z^4}{4^4}} + 8\sqrt[8]{\frac{x^8y^{16}z^8}{8^8}} + 8\sqrt[8]{\frac{x^8y^8z^{16}}{8^8}} \\ = x^2yz + xy^2z + xyz^2 = xyz(x + y + z) \] 得证.
回到原题.原式 \(\Leftrightarrow \displaystyle \sum \frac{x^5}{x^5 + y^2 + z^2} \geq \sum \frac{x^2}{x^5 + y^2 + z^2}\).
由 \(xyz \geq 1\) 及引理 \(1\),有 \(\displaystyle \frac{x^5}{x^5 + y^2 + z^2} \geq \frac{x^5}{\frac{x^5}{xyz} + y^2 + z^2} = \frac{x^5yz}{x^4 + y^3z + yz^3} \geq \frac{x^5yz}{x^4 + y^4 + z^4}\),同理有 \(\displaystyle \frac{y^5}{x^2 + y^5 + z^2} \geq \frac{xy^5z}{x^4 + y^4 + z^4}\)、\(\displaystyle \frac{z^5}{x^2 + y^2 + z^5} \geq \frac{xyz^5}{x^4 + y^4 + z^4}\),
则 \(\displaystyle \sum \frac{x^5}{x^5 + y^2 + z^2} \geq \sum \frac{x^5yz}{x^4 + y^4 + z^4} = \frac{xyz(x^4 + y^4 + z^4)}{x^4 + y^4 + z^4} = xyz \geq 1\).
由 \(xyz \geq 1\) 及引理 \(2\),有 \(\displaystyle \frac{x^2}{x^5 + y^2 + z^2} \leq \frac{x^2}{x^5 + xy^3z + xyz^3} = \frac{x}{x^4 + y^3z + yz^3} \leq \frac{x}{xyz(x + y + z)}\),同理有 \(\displaystyle \frac{y^2}{x^2 + y^5 + z^2} \leq \frac{y}{xyz(x + y + z)}\)、\(\displaystyle \frac{z^2}{x^2 + y^2 + z^5} \leq \frac{z}{xyz(x + y + z)}\),
则 \(\displaystyle \sum \frac{x^2}{x^5 + y^2 + z^2} \leq \sum \frac{x}{xyz(x + y + z)} = \frac{x + y + z}{xyz(x + y + z)} = \frac{1}{xyz} \leq 1\).
故 \(\displaystyle \sum \frac{x^5}{x^5 + y^2 + z^2} \geq 1 \geq \sum \frac{x^2}{x^5 + y^2 + z^2}\),原式得证.

浙公网安备 33010602011771号