MO 复健

不定期传一些最近写的 MO 题.

  1. 如图,在锐角 \(\triangle ABC\) 中,\(O, H\) 分别是外心和垂心,\(K\)\(AH\) 的中点,\(P\)\(AC\) 上,且满足 \(\angle BKP = 90^\circ\).求证:\(OP \parallel BC\)

    证明:

    如图,作直线 \(BH\)\(AC\) 于点 \(D\),连结 \(KD\);分别过 \(O, P\)\(BC\) 的垂线交于 \(E, F\)

    \(\angle BKP = \angle BDP = \angle BFP\),知 \(B, F, P, D, K\) 五点共圆.在 \(\text{Rt}\triangle HDA\) 中,\(KD = KH = \displaystyle \frac{AH}{2}\)\(\angle KDA = \angle KAD = 90^\circ - \angle C\),故 \(\angle KDP = 90^\circ + \angle C\)

    \(\angle CPF = 90^\circ - \angle C\),知 \(\angle DPF = 90^\circ + \angle C = \angle KDP\),结合四点共圆,知四边形 \(PDKF\) 为等腰梯形.由此,\(PF = DK = \displaystyle \frac{AH}{2}\).又 \(OE = R \cdot \cos A, AH = AB \cdot \cos A \cdot \sec (90^\circ - C) = 2R \cos A \Rightarrow OE = \displaystyle \frac{AH}{2} = PF\)\(OE \perp BC, PF \perp BC \Rightarrow OE \parallel PF\),知四边形 \(OEFP\) 是平行四边形,于是 \(OP \parallel BC\),得证.

  2. 如图,\(\triangle ABC\) 内接于 \(\odot O\)\(AA'\)\(BC\) 边上的高,\(X\) 在射线 \(AA'\) 上,\(\angle BAC\) 的平分线交 \(\odot O\)\(D\)\(N\)\(XD\) 的延长线上,且满足 \(ON \parallel AD\)\(M\)\(XD\) 的中点.求证:\(\angle BAM = \angle CAN\)

    证明:

    如图,连结 \(AO\) 并延长交 \(\odot O\) 于点 \(E\),连结 \(OD, NE, AN\)

    由于 \(\angle BAX = 90^\circ - \angle B = \angle CAO\),故 \(AD\) 平分 \(\angle XAE\).又 \(OD \parallel AX, ON \parallel AD\),得 \(ON\) 平分 \(\angle DOE\).又 \(OD = OE\)\(N\) 在角平分线上,知 \(\triangle ODN \cong \triangle OEN\).而 \(AX \parallel OD\),知 \(\triangle AXD \sim \triangle ODN \Rightarrow \triangle AXD \sim \triangle OEN \Rightarrow \displaystyle \frac{AX}{XD} = \frac{OE}{EN} \Rightarrow \frac{AX}{XM} = \frac{AE}{EN}\).又 \(\angle AXD = \angle ODN = \angle OEN\),知 \(\triangle AXM \sim \triangle AEN\),于是 \(\angle XAM = \angle EAN \Rightarrow \angle BAM = \angle CAN\).证毕.

  3. \(a, b, c \in R_+\)\(abc = 1\),求证:\((a + b)(b + c)(c + a) \geq 4(a + b + c - 1)\)

    证明:设 \(p = a + b + c, q = ab + bc + ca, r = abc = 1\).则要证 \(pq - r \geq 4(p - 1)\)

    \(r = 1\),只需证 \(pq + 3 \geq 4p\),又由舒尔不等式,\(q^2 \geq 3pr, r = 1 \Rightarrow q \geq \sqrt{3p}\),只需证 \(p\sqrt{3p} + 3 \geq 4p\),整理平方得 \(3p^3 - 16p^2 + 24p - 9 \geq 0\).设 \(f(x) = 3x^3 - 16x^2 + 24x - 9 = (x - 3)(3x^2 - 7x + 3)\),则 \(f(3) = 0\)\(f'(x) = 9x^2 - 32x + 24\),当 \(x \geq 3\) 时,易知 \(f'(x) \geq 0\),于是 \(f(x) \geq 0\),那么只需证 \(p \geq 3\).而 \(p^2 \geq 3q \geq 3\sqrt{3p} \Rightarrow p \geq 3\),得证.

  4. 如图,\(\triangle ABC\) 中,\(AB = AC\)\(D\)\(BC\) 中点,过点 \(B\)\(\odot O\) 分别交 \(AB, AD, BC\)\(L, M, N\)\(MN\)\(AC\)\(K\),过 \(C\)\(LN\) 的平行线分别交 \(AD, KL\)\(S, T\),证明:\(M, T, B, S\) 共圆.

    证明:

    如图,连结 \(MT, MB, MC, ML\).易知 \(MB = MC\)

    \(\angle LMN = 180^\circ - \angle LBN = 180^\circ - (90^\circ - \displaystyle \frac{\angle A}{2}) = 90^\circ + \frac{\angle A}{2}\),故 \(M\)\(\triangle ALK\) 的内心,于是 \(\angle CKN = \angle AKM = \angle MKL, \angle CNK = \angle ALM = \angle MLK\),故 \(\triangle KCN \sim \triangle KML\),则有 \(\triangle KMC \sim \triangle KLN\),所以 \(\angle KMC = \angle KLN = \angle KTC(LN \parallel TC)\),故 \(K, M, T, C\) 四点共圆.

    \(\angle MTC = \angle NKC = \angle AKM = \angle MKT = \angle MCT \Rightarrow MT = MC = MB\),故 \(M\)\(\triangle TBC\) 的外心,\(\angle BTS = \angle BTC = \displaystyle \frac{\angle BMC}{2} = \angle BMS\),故 \(M, T, B, S\) 四点共圆.证毕.

  5. 如图,完全四边形 \(ABCDEF\) 中,\(\angle A = 90^\circ\),点 \(O\)\(\triangle BCE\) 外心,\(\triangle CDF\) 的外接圆 \(\odot P\)\(OD\) 于另一点 \(K\),证明:\(\angle FDB = \angle FKB\)

    证明:

    如图,作出 \(\triangle CBE\) 的外接圆,交 \(\odot P\) 于点 \(M\)\(OD\)\(BF\) 于点 \(G\),连结图中线段.

    由密克定理,\(M, C, B, E\)\(M, F, A, B\) 分别四点共圆.\(\angle MPF = 2\angle MDF = 2\angle MEA = 2\angle MEB = \angle MOB\),又 \(MP = FP, MO = BO\),故 \(\triangle MFP \sim \triangle MBO\),于是 \(\triangle PMO \sim \triangle FMB\),故 \(\angle PMO = \angle FMB = 180^\circ - \angle A = 90^\circ\).于是 \(\odot O, \odot P\) 正交,\(OC\)\(\odot P\) 的切线.

    由圆幂定理,\(OC^2 = OK \cdot OD\),又 \(OB = OC\),知 \(OB^2 = OK \cdot OD\),于是 \(OB\)\(\triangle KDB\) 的切线,有 \(\angle OBK = \angle BDK\)

    \(\angle KBF - \angle DBF = \angle BFD + \angle BDF - \angle BFK - \angle BKF\).而 \(\angle KBF - \angle DBF = \angle OBC - \angle OBK - \angle DBF = (90^\circ - \angle BMC) - \angle KDB - \angle DBF = \angle FMC - \angle FGD = \widehat{FC} - \widehat{FD} + \widehat{KC} = \widehat{CD} - \widehat{KC} = \angle CFD - \angle CFK = \angle BFD - \angle BFK\),带回前式知 \(\angle BDF - \angle BKF = 0\),于是 \(\angle FDB = \angle FKB\),证毕.

posted @ 2024-08-05 18:32  wf715  阅读(9)  评论(0编辑  收藏  举报