P3008 [USACO11JAN] Roads and Planes G(dij + 拓扑排序)

link

发现单向航线存在负边权,不能直接跑 dij

而双向的道路保证为正边权,可以在道路中跑 dij,想到把道路进行类似“缩点”的操作,把直接相连的道路看做连通快

那么在连通快这样的团之间,有航线相连,且航线满足一个很好的性质:若存在 x -> y,则不可能存在 y -> x,即无环

那团与航线所成的图就是一个含负边权的 DAG

后来发现 DAG 上求单源最短路,可以直接做一遍拓扑排序扫描 \(O(n+m)\)

code
inline void topsort()
{
	memset(dist, 0x3f, sizeof(dist));
	for (int i = 1; i <= n; i ++)
		if (!in[i]) q.push(i);
		
	while (!q.empty())
	{
		int x = q.front(); q.pop();
		
		for (int i = h[x]; i; i = e[i].next)
		{
			int y = e[i].to, w = e[i].w;
			dist[y] = min(dist[y], dist[x] + w);
			
			if (--in[y] == 0) q.push(y);
		}
	}
}

所以,思路就很直观了,对道路预处理出连通快,总的对团与航线层次做拓扑排序,再在其中每次的连通快内的层次做 dij,不过实际实现还有很多细节要注意

算法复杂度瓶颈就是 dij,整个做法也就是 \(O(m\log n)\)

#include <bits/stdc++.h>
#define re register int 
using namespace std;
typedef pair<int, int> pii;
const int N = 3e4 + 10, M = 2e5 + 10, inf = 0x3f3f3f3f;
struct edge
{
	int to, w, next;
}e[M];
int top, h[N];
int dist[N], in[N], id[N], idx;
int n, mr, ml, s;
bool vis[N];
vector<int> block[N];
queue<int> tp;
priority_queue< pii, vector<pii>, greater<pii> > q;

inline void add(int x, int y, int w)
{
	e[++ top] = (edge){y, w, h[x]};
	h[x] = top;
}

void dfs(int u, int uid)
{
    id[u] = uid;
    block[uid].push_back(u);

    for (int i = h[u]; i; i = e[i].next)
    {
        int v = e[i].to;
        if (!id[v])
            dfs(v, uid);
    }
}

inline void dijkstra(int xid)
{
	
	for (re i = 0; i < block[xid].size(); i ++)
	{
		int x = block[xid][i];
		q.push(make_pair(dist[x], x));
	}
	
	while (!q.empty())
	{
		int x = q.top().second; q.pop();
		if (vis[x]) continue;
		vis[x] = true;
		
		for (re i = h[x]; i; i = e[i].next)
		{
			int y = e[i].to, w = e[i].w;
			
			if (dist[y] > dist[x] + w)
			{
				dist[y] = dist[x] + w;
				if (id[x] == id[y])
					q.push(make_pair(dist[y], y));
			}
			if (id[x] != id[y] && -- in[id[y]] == 0)
				tp.push(id[y]); 
		}
	}
		
}

inline void topsort()
{
	for (re i = 1; i <= n; i ++) dist[i] = inf;
	dist[s] = 0;
	
	for (re i = 1; i <= idx; i ++) 
		if (in[i] == 0) tp.push(i);
	
	while (!tp.empty())
	{
		int x = tp.front(); tp.pop();
		dijkstra(x);
	}
}

int main()
{
	ios::sync_with_stdio(false);
	cin.tie(0); cout.tie(0);
	
	cin >> n >> mr >> ml >> s;
	while (mr --)
	{
		int a, b, c; cin >> a >> b >> c;
		add(a, b, c);
		add(b, a, c);
	}
    for (int i = 1; i <= n; i ++)
        if (!id[i])
        {
            idx ++;
            dfs(i, idx);
        }
        
	while (ml --)
	{
		int a, b, c; cin >> a >> b >> c;
		add(a, b, c);
		in[id[b]] ++;
	}
	topsort();
	
	for (re i = 1; i <= n; i ++)
		if (dist[i] > N * 10000) cout << "NO PATH\n";
		else cout << dist[i] << '\n';
		
	return 0;
}
posted @ 2024-05-24 13:50  Zhang_Wenjie  阅读(28)  评论(0)    收藏  举报