450. Delete Node in a BST
Given a root node reference of a BST and a key, delete the node with the given key in the BST. Return the root node reference (possibly updated) of the BST.
Basically, the deletion can be divided into two stages:
- Search for a node to remove.
- If the node is found, delete the node.
Note: Time complexity should be O(height of tree).
Example:
root = [5,3,6,2,4,null,7]
key = 3
5
/ \
3 6
/ \ \
2 4 7
Given key to delete is 3. So we find the node with value 3 and delete it.
One valid answer is [5,4,6,2,null,null,7], shown in the following BST.
5
/ \
4 6
/ \
2 7
Another valid answer is [5,2,6,null,4,null,7].
5
/ \
2 6
\ \
4 7
class Solution { public TreeNode deleteNode(TreeNode root, int key) { if(root == null) { return root; } //find the target if(root.val < key) { root.right = deleteNode(root.right, key); return root; } else if(root.val > key) { root.left = deleteNode(root.left, key); return root; } //No child or only one child if(root.left == null && root.right == null) { return null; } else if(root.left == null) { return root.right; } else if(root.right == null) { return root.left; } //Two children if(root.right.left == null) { root.right.left = root.left; return root.right; } else { TreeNode smallest = deleteSmallest(root.right); smallest.left = root.left; smallest.right = root.right; return smallest; } } private TreeNode deleteSmallest(TreeNode root) { TreeNode cur = root.left; TreeNode pre = root; while(cur.left != null) { pre = cur; cur = cur.left; } pre.left = cur.right; return cur; } }
删除bst的一个node,会引出很多问题,
1.如何确定要删除的node在哪:用bst的性质,如果key比root大,说明在root.right, 因为我们要在tree上操作,所以递归使root.right = func(root.right, key), 最后root。right就是排好序并删除了key node的,随后返回root。
如果key比root小,反之。
2.这时我们到了要删除的node,如何处理它的child,我们分为两种情况:1. 没有child(直接返回null,这时上层root.left/right == null,说明删除了这个node),或者只有left或者right child,我们只需要返回root.left(当只有left child)或root.right(当只有right child),说明把root删掉了,返回剩下的它的childs)
2.2 有两个child,也需要判断,因为我们删除了这个root后少了主心骨,要从孩子中选一个来代替,作为新的root传上去。那究竟传哪一个呢?因为bst是right > root > left, 新的root要起到表率作用,既要大于所有的left又要小于所有的right,所以我们从right里面选,选谁呢?选right child中最小的,然而最小的也比你所有left child大。再写一个method,pre是root,cur是root.left, 这么left下去直到左边没东西了,就找到了最小的。因为我们要返回他,所以也要安排好他的左右child,而它现在只有right child,所以让pre.left = cur.right. 好的,我们得到了smallest干什么呢?做为新的root阿,所以要把刚才的left right child安顿好,smallest.left = root.left, smallest.right = root.right, 这样就把原来的root删除了,返回smallest。
然而,如果root.right.left == null 时,说明root.right已经是smallest了,就让root.right.left = root.left, 然后返回root.right。
这道题考bst的性质,考recursive害挺有意义

浙公网安备 33010602011771号