303. Range Sum Query - Immutable
Given an integer array nums, find the sum of the elements between indices i and j (i ≤ j), inclusive.
Example:
Given nums = [-2, 0, 3, -5, 2, -1] sumRange(0, 2) -> 1 sumRange(2, 5) -> -1 sumRange(0, 5) -> -3
Note:
You may assume that the array does not change.
There are many calls to sumRange function.
-
class NumArray { private final int[] arr; public NumArray(int[] nums) { this.arr = new int[nums.length]; int sum = 0; for(int i = 0; i < nums.length; i++){ sum += nums[i]; arr[i] = sum; } } public int sumRange(int i, int j) { return arr[j] - (i == 0 ? 0 : arr[i - 1]); } }
arr[i]是nums数组从0到i(包括)的sum,所以要求i,j之间的和,先判断i是否为0,然后等于arr[j] - arr[i - 1]。
以上是dp解法。
👴倒是觉得easy题就要有easy题的亚子,直接设一个数组复制不就完了吗.
class NumArray { private final int[] arr; public NumArray(int[] nums) { arr = nums.clone(); } public int sumRange(int i, int j) { int res = 0; for(int m = i; i <= j; i++){ res += arr[i]; } return res; } }
class NumArray { int[] arr; int[] cnt; public NumArray(int[] nums) { arr = nums; cnt = new int[nums.length + 1]; for(int i = 1; i <= nums.length; i++) cnt[i] = cnt[i - 1] + nums[i - 1]; } public int sumRange(int left, int right) { return cnt[right + 1] - cnt[left]; } }
用prefix sum的方法重新创建一个数组,注意index

浙公网安备 33010602011771号