PAM for Kmedoids algorithm, PAM算法的实现, kmeans 算法实现. 利用scikit-learn toolbox.

最近对clustering感兴趣就自己写了一个k mediods的实现. 这个算法据说是比kmeans要robust. 我觉得关键的不同就是cluster的中心点是一个真实的数据点  而不是构想出来的mean.

写起来倒是很简单, 最后vectorize用了cdist() 函数 很好用.

先看结果 : 这是3个类 总共3000 个点的结果.

 

上代码: 

各种imports:

import matplotlib as plt
from pylab import *
import collections
import copy
import pdb
import numpy as np
from scipy.spatial.distance import cdist
import random

这里介绍一下我主要的数据结构 :

medoids 是一个字典,

-2 是total cost

-1: 一个numpy array 存了medoids的index.

0 - k 存了各个cluster的成员的index

 

data是一个array, 每一行是一个数据点.

下面这个函数计算total cost 根据当前的情况:

def total_cost(data, medoids):
    '''
compute the total cost based on current setting.
'''
    med_idx = medoids[-1];
    k = len(med_idx);
    cost = 0.0;

    med = data[ med_idx]
    dis = cdist( data, med, 'euclidean')
    cost = dis.min(axis = 1).sum()
    
    # rewrite using the cdist() function, which should be way faster
    # for i in range(k):
    # med = data[med_idx[i]]
    # for j in medoids[i]:
    # cost = cost + np.linalg.norm(med - data[j])
    #
    medoids[-2] = [cost]

clustering()函数 分配每一点的归属 根据当前的情况.

def clustering(data, medoids):
    '''
compute the belonging of each data point according to current medoids centers, and eucludiean distance.
'''
    
    # pdb.set_trace()
    med_idx = medoids[-1]
    med = data[med_idx]
    k = len(med_idx)
    

    dis = cdist(data, med)
    best_med_it_belongs_to = dis.argmin(axis = 1)
    for i in range(k):
        medoids[i] =where(best_med_it_belongs_to == i)

 

最重要的kmedoids() 函数, 用来循环找到最优的clutering

old... 和cur... 比较 直到没有变化了 就退出循环

cur...每次交换一对 ( 中心点, 非中心点) 构成tmp.... , 从所有的tmp...中找到最优的best....

def kmedoids( data, k):
    '''
given the data and # of clusters, compute the best clustering based on the algorithm provided in wikipedia: google pam algorithm.
'''
    # cur_medoids compare with old_medoids, convergence achieved if no change in the list of medoids in consecutive iterations.
    # tmp_medoids is cur_medoids swapped only one pair of medoid and non-medoid data point.
    # best_medoids is the best tmp_medoids through all possible swaps.

    N = len(data)
    cur_medoids = {}
    cur_medoids[-1] = range(k)
    clustering(data, cur_medoids)
    total_cost(data, cur_medoids)
    old_medoids = {}
    old_medoids[-1] = []
    
    iter_counter = 1
    # stop if not improvement.
    while not set(old_medoids[-1]) == set(cur_medoids[-1]):
        print 'iteration couter:' , iter_counter
        iter_counter = iter_counter + 1
        best_medoids = copy.deepcopy(cur_medoids)
        old_medoids = copy.deepcopy(cur_medoids)
        # pdb.set_trace()
        # iterate over all medoids and non-medoids
        for i in range(N):
            for j in range(k):
                if not i ==j :
                    # swap only a pair
                    tmp_medoids = copy.deepcopy(cur_medoids)
                    tmp_medoids[-1][j] = i

                    clustering(data, tmp_medoids)
                    total_cost(data, tmp_medoids)
                    # pick out the best configuration.
                    if( best_medoids[-2] > tmp_medoids[-2]):
                        best_medoids = copy.deepcopy(tmp_medoids)
        cur_medoids = copy.deepcopy(best_medoids)
        print 'current total cost is ', cur_medoids[-2]
    return cur_medoids

最后写一个test() 函数, 3个gaussian类 总共1000个点.

def test():
    dim = 2
    N =1000

    # create datas with different normal distributions.
    d1 = np.random.normal(1, .2, (N,dim))
    d2 = np.random.normal(2, .5, (N,dim))
    d3 = np.random.normal(3, .3, (N,dim))
    data = np.vstack((d1,d2,d3))
    
    # need to change if more clusters are needed .
    k = 3
    medoids = kmedoids(data, k)
    # plot different clusters with different colors.
    scatter( data[medoids[0], 0] ,data[medoids[0], 1], c = 'r')
    scatter( data[medoids[1], 0] ,data[medoids[1], 1], c = 'g')
    scatter( data[medoids[2], 0] ,data[medoids[2], 1], c = 'y')
    scatter( data[medoids[-1], 0],data[medoids[-1], 1] , marker = 'x' , s = 500)
    show()

最后执行代码就好了  只要2min

if __name__ =='__main__':
    test()

 另外, 我还找到了python很好使的scikit-learn toolbox , 是machine learning相关的. 就练了下手 写个kmeans

先上图: 这是gaussian 3 个类, 每个类3000 个点

代码: 首先还是imports

import time
import numpy as np
import pylab as pl
from sklearn.cluster import KMeans
from sklearn.metrics.pairwise import euclidean_distances
from sklearn.datasets.samples_generator import make_blobs

然后是生成数据, 并且很简单的train kmeans:

np.random.seed(0)
centers = [[1,1], [-1,-1], [1, -1]]
k = len(centers)
x , labels = make_blobs(n_samples=3000, centers=centers, cluster_std=.7)

kmeans = KMeans(init='k-means++', n_clusters=3, n_init = 10)
t0 = time.time()
kmeans.fit(x)
t_end = time.time() - t0

最后是画图:

colors = ['r', 'b', 'g']
for k , col in zip( range(k) , colors):
    members = (kmeans.labels_ == k )
    pl.plot( x[members, 0] , x[members,1] , 'w', markerfacecolor=col, marker='.')
    pl.plot(kmeans.cluster_centers_[k,0], kmeans.cluster_centers_[k,1], 'o', markerfacecolor=col,\
            markeredgecolor='k', markersize=10)
pl.show()

很多时候都觉得python比matlab好用多了, 最重要的是matlab和vim的结合不是很好 用起来很不顺手.

 


 

posted @ 2013-06-21 08:14  johnniac  阅读(5724)  评论(1编辑  收藏  举报