Uva 10976 Fractions Again?!
因为 \(x\geq y\) ,所以 \(\frac{1}{x}\leq \frac{1}{y}\);因为 \(\frac{1}{k}=\frac{1}{x}+\frac{1}{y}\),所以 \(\frac{1}{k}-\frac{1}{y}\leq \frac{1}{y}\),所以 \(\frac{2}{y}\geq\frac{1}{k}\)。
由上可知,\(\frac{y}{2}\leq k\),即 \(y\leq 2k\)。由题可知,\(y>k\),所以 \(y\in [k+1,2k]\)。
确定了 \(y\) 之后,我们知道 \(\frac{1}{x}=\frac{1}{k}-\frac{1}{y}\),因此 \(\frac{1}{x}=\frac{y-k}{ky}\),即 \(x=\frac{ky}{y-k}\)。本题得到解决。
#include<iostream>
#include<cstdio>
#include<vector>
using namespace std;
int main()
{
int k;
while(scanf("%d",&k)==1&&k)
{
vector<int>X,Y;
// x>=y => 1/x<=y/1 => 1/k-1/y<=1/y => 1/k<=2/y => k>=y/2 => y<=2k
// And we know y>k, so y belong to [k+1,2k]
for(int y=k+1;y<=2*k;y++)
{
// 1/k=>1/x+1/y=>x=1/(1/k-1/y)=>1/[(y-k)/yk]=>yk/(y-k)
if(y*k%(y-k)==0) {X.push_back(y*k/(y-k));Y.push_back(y);}
}
printf("%d\n",(int)X.size());
for(int i=0;i<(int)X.size();i++) printf("1/%d = 1/%d + 1/%d\n",k,X[i],Y[i]);
}
return 0;
}

浙公网安备 33010602011771号