Values whose Sum is 0
专题二(分治)
D - 4 Values whose Sum is 0
Time Limit:15000MS Memory Limit:228000KB 64bit IO Format:%I64d & %I64u
Description
The SUM problem can be formulated as follows: given four lists A, B, C, D of integer values, compute how many quadruplet (a, b, c, d ) ∈ A x B x C x D are such that a + b + c + d = 0 . In the following, we assume that all lists have the same size n .
Input
The first line of the input file contains the size of the lists n (this value can be as large as 4000). We then have n lines containing four integer values (with absolute value as large as 228 ) that belong respectively to A, B, C and D .
Output
For each input file, your program has to write the number quadruplets whose sum is zero.
Sample Input
6 -45 22 42 -16 -41 -27 56 30 -36 53 -37 77 -36 30 -75 -46 26 -38 -10 62 -32 -54 -6 45
Sample Output
5
Hint
Sample Explanation: Indeed, the sum of the five following quadruplets is zero: (-45, -27, 42, 30), (26, 30, -10, -46), (-32, 22, 56, -46),(-32, 30, -75, 77), (-32, -54, 56, 30).
#include <iostream>
#include <numeric>
#include <algorithm>
#include <cstdio>
using namespace std;
int main()
{
int n, m;
int day[100050];
scanf("%d %d", &n, &m);
int max_money = 0, min_money = 0;
for(int i = 0; i < n; ++i)
{
scanf("%d", &day[i]);
max_money +=day[i];
if(day[i] > min_money)
{
min_money = day[i];
}
}
int mid = max_money + min_money;
while(min_money < max_money)
{
mid = (min_money + max_money) / 2;
int k = 0;
int sum = 0;
for (int i = 0; i < n; i++)
{
sum += day[i];
if (sum > mid)
{
sum = day[i];
k++;
}
}
if (k < m) max_money = mid;
else min_money = mid + 1;
}
printf("%d",max_money);
return 0;
}
还是二分,最大值是每天的和,最小值就是钱最多的那天,然后通过二分,看M是否符合要求,就这样,继续下一道了

浙公网安备 33010602011771号