48、Spark SQL之与Spark Core整合之每日top3热点搜索词统计案例实战

一、概述

1、需求分析

数据格式:
日期 用户 搜索词 城市 平台 版本

需求:
1、筛选出符合查询条件(城市、平台、版本)的数据
2、统计出每天搜索uv排名前3的搜索词
3、按照每天的top3搜索词的uv搜索总次数,倒序排序
4、将数据保存到hive表中





###数据 keyword.txt

2018-10-1:leo:water:beijing:android:1.0
2018-10-1:leo1:water:beijing:android:1.0
2018-10-1:leo2:water:beijing:android:1.0
2018-10-1:jack:water:beijing:android:1.0
2018-10-1:jack1:water:beijing:android:1.0
2018-10-1:leo:seafood:beijing:android:1.0
2018-10-1:leo1:seafood:beijing:android:1.0
2018-10-1:leo2:seafood:beijing:android:1.0
2018-10-1:leo:food:beijing:android:1.0
2018-10-1:leo1:food:beijing:android:1.0
2018-10-1:leo2:meat:beijing:android:1.0
2018-10-2:leo:water:beijing:android:1.0
2018-10-2:leo1:water:beijing:android:1.0
2018-10-2:leo2:water:beijing:android:1.0
2018-10-2:jack:water:beijing:android:1.0
2018-10-2:leo1:seafood:beijing:android:1.0
2018-10-2:leo2:seafood:beijing:android:1.0
2018-10-2:leo3:seafood:beijing:android:1.0
2018-10-2:leo1:food:beijing:android:1.0
2018-10-2:leo2:food:beijing:android:1.0
2018-10-2:leo:meat:beijing:android:1.0


####

1、如果文本案例使用的是txt编辑,将文本保存ANSI格式,否则在groupByKey的时候,第一行默认会出现一个空格,分组失败。

2、文本的最后禁止出现空行,否则在split的时候会报错,出现数组越界的错误;


2、思路

1、针对原始数据(HDFS文件),获取输入的RDD

2、使用filter算子,去针对输入RDD中的数据,进行数据过滤,过滤出符合查询条件的数据。
  2.1 普通的做法:直接在fitler算子函数中,使用外部的查询条件(Map),但是,这样做的话,是不是查询条件Map,
  会发送到每一个task上一份副本。(性能并不好)
  2.2 优化后的做法:将查询条件,封装为Broadcast广播变量,在filter算子中使用Broadcast广播变量进行数据筛选。
  
3、将数据转换为“(日期_搜索词, 用户)”格式,然后呢,对它进行分组,然后再次进行映射,对每天每个搜索词的搜索用户进行去重操作,
并统计去重后的数量,即为每天每个搜索词的uv。最后,获得“(日期_搜索词, uv)”

4、将得到的每天每个搜索词的uv,RDD,映射为元素类型为Row的RDD,将该RDD转换为DataFrame

5、将DataFrame注册为临时表,使用Spark SQL的开窗函数,来统计每天的uv数量排名前3的搜索词,以及它的搜索uv,最后获取,是一个DataFrame

6、将DataFrame转换为RDD,继续操作,按照每天日期来进行分组,并进行映射,计算出每天的top3搜索词的搜索uv的总数,然后将uv总数作为key,
将每天的top3搜索词以及搜索次数,拼接为一个字符串

7、按照每天的top3搜索总uv,进行排序,倒序排序

8、将排好序的数据,再次映射回来,变成“日期_搜索词_uv”的格式

9、再次映射为DataFrame,并将数据保存到Hive中即可


二、java实现

package cn.spark.study.sql;

import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.FlatMapFunction;
import org.apache.spark.api.java.function.Function;
import org.apache.spark.api.java.function.PairFunction;
import org.apache.spark.broadcast.Broadcast;
import org.apache.spark.sql.DataFrame;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.RowFactory;
import org.apache.spark.sql.SQLContext;
import org.apache.spark.sql.hive.HiveContext;
import org.apache.spark.sql.types.DataTypes;
import org.apache.spark.sql.types.StructField;
import org.apache.spark.sql.types.StructType;
import scala.Tuple2;

import java.util.*;

public class DailyTop3Keyword {
    @SuppressWarnings("deprecation")
    public static void main(String[] args) {
        SparkConf conf = new SparkConf();
        JavaSparkContext jsc = new JavaSparkContext(conf);
        SQLContext sqlContext = new HiveContext(jsc.sc());
        
        // 伪造数据(这些数据可以来自mysql数据库)
        final HashMap<String, List<String>> queryParaMap = new HashMap<String, List<String>>();
        queryParaMap.put("city", Arrays.asList("beijing"));
        queryParaMap.put("platform", Arrays.asList("android"));
        queryParaMap.put("version", Arrays.asList("1.0", "1.2", "2.0", "1.5"));
        
        // 将数据进行广播
        final Broadcast<HashMap<String, List<String>>> queryParamMapBroadcast = jsc.broadcast(queryParaMap);
        
        // 针对HDFS文件中的日志,获取输入RDD
        JavaRDD<String> rowRDD = jsc.textFile("hdfs://spark1:9000/spark-study/keyword.txt");
        
        // filter算子进行过滤
        JavaRDD<String> filterRDD = rowRDD.filter(new Function<String, Boolean>() {

            private static final long serialVersionUID = 1L;

            @Override
            public Boolean call(String log) throws Exception {
                // 切割原始日志,获取城市、平台和版本
                String[] logSplit = log.split(":");
                String city = logSplit[3];
                String platform = logSplit[4];
                String version = logSplit[5];
                
                // 与查询条件进行比对,任何一个条件,只要该条件设置了,且日志中的数据没有满足条件
                // 则直接返回false,过滤掉该日志
                // 否则,如果所有设置的条件,都有日志中的数据,则返回true,保留日志
                HashMap<String, List<String>> queryParamMap = queryParamMapBroadcast.value();
                List<String> cities = queryParamMap.get("city");
                if (!cities.contains(city) && cities.size() > 0) {
                    return false;
                }
                List<String> platforms = queryParamMap.get("platform");
                if (!platforms.contains(platform)) {
                    return false;
                }
                List<String> versions = queryParamMap.get("version");
                if (!versions.contains(version)) {
                    return false;
                }

                return true;
            }
        });
        
        // 过滤出来的原始日志,映射为(日期_搜索词,用户)格式
        JavaPairRDD<String, String> dateKeyWordUserRDD = filterRDD.mapToPair(new PairFunction<String, String, String>() {

            private static final long serialVersionUID = 1L;

            @Override
            public Tuple2<String, String> call(String log) throws Exception {
                String[] logSplit = log.split(":");
                String date = logSplit[0];
                String user = logSplit[1];
                String keyword = logSplit[2];
                return new Tuple2<String, String>(date + "_" + keyword, user);
            }
        });
        
        // 进行分组,获取每天每个搜索词,有哪些用户搜索了(没有去重)
        JavaPairRDD<String, Iterable<String>> dateKeywordUsersRDD = dateKeyWordUserRDD.groupByKey();
        List<Tuple2<String, Iterable<String>>> collect1 = dateKeywordUsersRDD.collect();
        for (Tuple2<String, Iterable<String>> tuple2 : collect1) {
            System.out.println("进行分组,获取每天每个搜索词,有哪些用户搜索了(没有去重)" + tuple2._2);
            System.out.println(tuple2);
        }

        // 对每天每个搜索词的搜索用户  去重操作  获得前uv
        JavaPairRDD<String, Long> dateKeywordUvRDD = dateKeywordUsersRDD.mapToPair
                (new PairFunction<Tuple2<String, Iterable<String>>, String, Long>() {

                    private static final long serialVersionUID = 1L;

                    @Override
                    public Tuple2<String, Long> call(Tuple2<String, Iterable<String>> dataKeywordUsers) throws Exception {
                        String dateKeyword = dataKeywordUsers._1;
                        Iterator<String> users = dataKeywordUsers._2.iterator();
                        // 对用户去重   并统计去重后的数量
                        List<String> distinctUsers = new ArrayList<String>();
                        while (users.hasNext()) {
                            String user = users.next();
                            if (!distinctUsers.contains(user)) {
                                distinctUsers.add(user);
                            }
                        }
                        // 获取uv
                        long uv = distinctUsers.size();
                        // 日期_搜索词,用户个数
                        return new Tuple2<String, Long>(dateKeyword, uv);
                    }
                });
        List<Tuple2<String, Long>> collect2 = dateKeywordUvRDD.collect();
        for (Tuple2<String, Long> stringLongTuple2 : collect2) {
            System.out.println("对每天每个搜索词的搜索用户  去重操作  获得前uv");
            System.out.println(stringLongTuple2);
        }


        // 将每天每个搜索词的uv数据,转换成DataFrame
        JavaRDD<Row> dateKeywordUvRowRDD = dateKeywordUvRDD.map(new Function<Tuple2<String, Long>, Row>() {

            private static final long serialVersionUID = 1L;

            @Override
            public Row call(Tuple2<String, Long> dateKeywordUv) throws Exception {
                String date = dateKeywordUv._1.split("_")[0];
                String keyword = dateKeywordUv._1.split("_")[1];
                long uv = dateKeywordUv._2;
                return RowFactory.create(date, keyword, uv);
            }
        });
        ArrayList<StructField> fields = new ArrayList<StructField>();
        fields.add(DataTypes.createStructField("date", DataTypes.StringType, true));
        fields.add(DataTypes.createStructField("keyword", DataTypes.StringType, true));
        fields.add(DataTypes.createStructField("uv", DataTypes.LongType, true));
        StructType structType = DataTypes.createStructType(fields);
        DataFrame dateKeywordUvDF = sqlContext.createDataFrame(dateKeywordUvRowRDD, structType);
        dateKeywordUvDF.registerTempTable("sales");
        
        // 使用开窗函数,统计每天搜索uv排名前三的热点搜索词
        // 日期  搜索词   人数个数  前三名
        final DataFrame dailyTop3KeyWordDF = sqlContext.sql("select date,keyword,uv from (select date, keyword, uv, row_number() over (partition by date order by uv DESC ) rank from sales ) tmp_sales where rank <=3");
        // 将DataFrame转换为RDD, 映射,
        JavaRDD<Row> dailyTop3KeyWordRDD = dailyTop3KeyWordDF.javaRDD();

        JavaPairRDD<String, String> dailyTop3KeywordRDD = dailyTop3KeyWordRDD.mapToPair(new PairFunction<Row, String, String>() {

            private static final long serialVersionUID = 1L;

            @Override
            public Tuple2<String, String> call(Row row) throws Exception {
                String date = String.valueOf(row.get(0));
                String keyword = String.valueOf(row.get(1));
                String uv = String.valueOf(row.get(2));
                // 映射为  日期  搜索词_总个数
                return new Tuple2<String, String>(date, keyword + "_" + uv);
            }
        });

        List<Tuple2<String, String>> collect = dailyTop3KeywordRDD.collect();
        for (Tuple2<String, String> stringStringTuple2 : collect) {
            System.out.println("开窗函数操作");
            System.out.println(stringStringTuple2);
        }


        // 根据 日期分组
        JavaPairRDD<String, Iterable<String>> top3DateKeywordsRDD = dailyTop3KeywordRDD.groupByKey();
        // 进行映射
        JavaPairRDD<Long, String> uvDateKeywordsRDD = top3DateKeywordsRDD.mapToPair(new PairFunction<Tuple2<String, Iterable<String>>, Long, String>() {

            private static final long serialVersionUID = 1L;

            @Override
            public Tuple2<Long, String> call(Tuple2<String, Iterable<String>> tuple) throws Exception {
                String date = tuple._1;
                // 搜索词_总个数  集合
                Iterator<String> KeyWordUviterator = tuple._2.iterator();
                long totalUv = 0L;
                String dateKeyword = date;
                while (KeyWordUviterator.hasNext()) {
                    // 搜索词_个数
                    String keywoarUv = KeyWordUviterator.next();
                    Long uv = Long.valueOf(keywoarUv.split("_")[1]);
                    totalUv += uv;
                    dateKeyword = dateKeyword + "," + keywoarUv;
                }

                return new Tuple2<Long, String>(totalUv, dateKeyword);
            }
        });
        JavaPairRDD<Long, String> sortedUvDateKeywordsRDD = uvDateKeywordsRDD.sortByKey(false);
        List<Tuple2<Long, String>> rows = sortedUvDateKeywordsRDD.collect();
        for (Tuple2<Long, String> row : rows) {
            System.out.println(row._2 + "    " + row._1);
        }


        // 映射
        JavaRDD<Row> resultRDD = sortedUvDateKeywordsRDD.flatMap(new FlatMapFunction<Tuple2<Long, String>, Row>() {

            private static final long serialVersionUID = 1L;

            @Override
            public Iterable<Row> call(Tuple2<Long, String> tuple) throws Exception {
                String dateKeywords = tuple._2;
                String[] dateKeywordsSplit = dateKeywords.split(",");
                String date = dateKeywordsSplit[0];
                ArrayList<Row> rows = new ArrayList<Row>();
                rows.add(RowFactory.create(date, dateKeywordsSplit[1].split("_")[0],
                        Long.valueOf(dateKeywordsSplit[1].split("_")[1])));

                rows.add(RowFactory.create(date, dateKeywordsSplit[2].split("_")[0],
                        Long.valueOf(dateKeywordsSplit[2].split("_")[1])));

                rows.add(RowFactory.create(date, dateKeywordsSplit[3].split("_")[0],
                        Long.valueOf(dateKeywordsSplit[3].split("_")[1])));

                return rows;
            }
        });
        
        // 将最终的数据,转换为DataFrame,并保存到Hive表中
        DataFrame finalDF = sqlContext.createDataFrame(resultRDD, structType);
//        List<Row> rows1 = finalDF.javaRDD().collect();
//        for (Row row : rows1) {
//            System.out.println(row);
//        }
        finalDF.saveAsTable("daily_top3_keyword_uv");

        jsc.close();

    }
}
posted @ 2019-08-08 10:38  米兰的小铁將  阅读(668)  评论(0)    收藏  举报