牛客题解 | 实现长短期记忆(LSTM)网络
题目
长短期记忆(LSTM)网络是循环神经网络的一种,其特点是能够处理长序列数据。LSTM网络的数学推导可以参考相关资料。
LSTM的具体步骤如下:
- 计算遗忘门\[f_t = \sigma(W_f \cdot [h_{t-1}, x_t] + b_f) \]
- 计算输入门\[i_t = \sigma(W_i \cdot [h_{t-1}, x_t] + b_i) \]
- 计算细胞状态更新\[c_t = f_t \cdot c_{t-1} + i_t \cdot \tanh(W_c \cdot [h_{t-1}, x_t] + b_c) \]
- 计算输出门\[o_t = \sigma(W_o \cdot [h_{t-1}, x_t] + b_o) \]
其中,\(\sigma\)是sigmoid函数,表达式为\(\sigma(x) = \frac{1}{1 + e^{-x}}\),\(\tanh\)是tanh函数,表达式为\(\tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}\)。
5. 计算隐藏状态更新
\[h_t = o_t \cdot \tanh(c_t)
\]
标准代码如下
class LSTM:
def __init__(self, input_size, hidden_size):
self.input_size = input_size
self.hidden_size = hidden_size
# Initialize weights and biases
self.Wf = np.random.randn(hidden_size, input_size + hidden_size)
self.Wi = np.random.randn(hidden_size, input_size + hidden_size)
self.Wc = np.random.randn(hidden_size, input_size + hidden_size)
self.Wo = np.random.randn(hidden_size, input_size + hidden_size)
self.bf = np.zeros((hidden_size, 1))
self.bi = np.zeros((hidden_size, 1))
self.bc = np.zeros((hidden_size, 1))
self.bo = np.zeros((hidden_size, 1))
def forward(self, x, initial_hidden_state, initial_cell_state):
h = initial_hidden_state
c = initial_cell_state
outputs = []
for t in range(len(x)):
xt = x[t].reshape(-1, 1)
concat = np.vstack((h, xt))
# Forget gate
ft = self.sigmoid(np.dot(self.Wf, concat) + self.bf)
# Input gate
it = self.sigmoid(np.dot(self.Wi, concat) + self.bi)
c_tilde = np.tanh(np.dot(self.Wc, concat) + self.bc)
# Cell state update
c = ft * c + it * c_tilde
# Output gate
ot = self.sigmoid(np.dot(self.Wo, concat) + self.bo)
# Hidden state update
h = ot * np.tanh(c)
outputs.append(h)
return np.array(outputs), h, c
def sigmoid(self, x):
return 1 / (1 + np.exp(-x))

浙公网安备 33010602011771号