1 import tensorflow as tf
2 import os
3
4
5 mnist = tf.keras.datasets.mnist
6 (x_train, y_train), (x_test, y_test) = mnist.load_data()
7 x_train, x_test = x_train/255.0, x_test/255.0
8
9
10 model = tf.keras.models.Sequential([
11 tf.keras.layers.Flatten(),
12 tf.keras.layers.Dense(128, activation='relu'),
13 tf.keras.layers.Dense(10, activation='softmax')
14 ])
15
16 model.compile(optimizer='adam',
17 loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False),
18 metrics=['sparse_categorical_accuracy'])
19
20
21
22 checkpoint_save_path = "./checkpoint/mnist.ckpt"
23 if os.path.exists(checkpoint_save_path + ".index"):
24 print("-----------------load the model-----------------------")
25 model.load_weights(checkpoint_save_path)
26
27 cp_callback = tf.keras.callbacks.ModelCheckpoint(filepath=checkpoint_save_path,
28 save_weights_only=True,
29 save_best_only=True)
30
31 history = model.fit(x_train, y_train, batch_size=32, epochs=5, validation_data=(x_test, y_test),
32 validation_freq=1, callbacks=[cp_callback])
33 model.summary()