"""K折验证"""
#K validation
import numpy as np
k = 4
num_val_samples = len(train_data) // k
num_epochs = 100
all_scores = []
for i in range(k):
print("processing fold #", i)
val_data = train_data[i * num_val_samples:(i + 1) * num_val_samples]
val_targets = train_targets[i * num_val_samples : (i + 1) * num_val_samples]
partial_train_data = np.concatenate([
train_data[: i * num_val_samples], train_data[(i+1) * num_val_samples :]], axis = 0)
partial_train_targets = np.concatenate([
train_targets[: i * num_val_samples], train_targets[ (i + 1) * num_val_samples :]], axis = 0)
model = build_model()
model.fit(partial_train_data, partial_train_targets,
epochs = num_epochs, batch_size = 1, verbose = 0)
val_mse, val_mae = model.evaluate(val_data, val_targets, verbose = 0)
all_scores.append(val_mae)
all_scores
np.mean(all_scores)
"""保存每折验证的结果"""
#save k-viladation results
num_epochs = 500
all_mae_histories= []
for i in range(k):
print("processing fold #", i)
val_data = train_data[i * num_val_samples : (i + 1) * num_val_samples]
val_targets = train_targets[i * num_val_samples : (i + 1) * num_val_samples]
partial_train_data = np.concatenate(
[train_data[: i * num_val_samples], train_data[(i + 1) * num_val_samples :]], axis = 0)
partial_train_targets = np.concatenate([train_targets[: i * num_val_samples], train_targets[(i + 1) * num_val_samples :]], axis = 0)
model = build_model()
history = model.fit(partial_train_data, partial_train_targets,
validation_data = (val_data, val_targets),
epochs = num_epochs, batch_size = 1, verbose = 0)
mae_history = history.history['val_mean_absolute_error']
all_mae_histories.append(mae_history)