>>> import numpy as np
>>> L = np.random.random(100)
>>> L
array([0.82846513, 0.19136857, 0.27040895, 0.56103442, 0.90238039,
0.85178834, 0.41808196, 0.39347627, 0.01622051, 0.29921337,
0.35377822, 0.89350267, 0.78613657, 0.77138693, 0.42005486,
0.77602514, 0.46430814, 0.18177017, 0.8840256 , 0.71879227,
0.6718813 , 0.25656363, 0.43080182, 0.01645358, 0.23499383,
0.51117131, 0.29200924, 0.50189351, 0.49827313, 0.10377152,
0.44644312, 0.96918917, 0.73847112, 0.71955061, 0.89304339,
0.96267468, 0.19705023, 0.71458996, 0.16192394, 0.86625477,
0.62382025, 0.95945512, 0.52414204, 0.03643288, 0.72687158,
0.00390984, 0.050294 , 0.99199232, 0.2122575 , 0.94737066,
0.45154055, 0.99879467, 0.64750149, 0.70224071, 0.42958177,
>>> sum(L)
52.03087325680787
>>> np.sum(L)
52.030873256807865
big_array = np.random.rand(1000000)
>>> np.min(big_array)
4.459899819675428e-06
>>> big_array.max()
0.9999999038835905
>>> X = np.arange(16).reshape(4,4)
>>> X
array([[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11],
[12, 13, 14, 15]])
>>> np.sum(X)
120
>>> np.sum(X,axis=0)
array([24, 28, 32, 36])
>>> np.sum(X,axis=1)
array([ 6, 22, 38, 54])
>>> np.prod(X)
0
>>> np.prod(X + 1)
2004189184
>>> np.mean(X)
7.5
>>> np.median(X)
7.5
>>> V = np.array([1,1,2,2,10])
>>> np.mean(V)
3.2
>>> np.median(V)
2.0
>>> np.percentile(big_array,q=50)
0.499739362948878
>>> for percent in [0,25,50,75,100]:
... print(np.percentile(big_array,q=percent))
...
4.459899819675428e-06
0.24975691457362903
0.499739362948878
0.7498092671305248
0.9999999038835905
>>> X = np.random.normal(0,1,size=1000000)
>>> np.mean(X)
0.00026937497963613595
>>> np.std(X)
0.9996291605602685
>>> np.min(X)
-5.333919783687649
>>> np.argmin(X)
661675
>>> np.argmax(X)
774515
>>> X[91952]
-0.5633231945005146
>>> np.max(X)
4.53612178954408
>>> x = np.arange(16)
>>> x
array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15])
>>> np.random.shuffle(x)
>>> x
array([ 2, 7, 8, 4, 14, 15, 6, 11, 13, 1, 12, 0, 9, 10, 3, 5])
>>> np.sort(x)
array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15])
>>> x.sort()
>>> x
array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15])
>>> x = np.random.randint(10, size=(4,4))
>>> x
array([[7, 0, 0, 7],
[0, 3, 5, 7],
[9, 7, 3, 9],
[4, 0, 9, 2]])
>>> np.sort(x)
array([[0, 0, 7, 7],
[0, 3, 5, 7],
[3, 7, 9, 9],
[0, 2, 4, 9]])
>>> np.sort(x,axis=0)
array([[0, 0, 0, 2],
[4, 0, 3, 7],
[7, 3, 5, 7],
[9, 7, 9, 9]])
>>> np.partition(X,3)
array([-5.33391978, -5.13221775, -4.86828137, ..., 0.16378629,
1.09224809, 1.00502282])