Null Space

Null Space


If $\it{T}$ is a linear transformation of \mathbb{R}^n, then the null space Null($\it{T}$), also called the kernel $\it{Ker(T)}$, is the set of all vectors $\it{X}$ such that

 T(X)=0,

i.e.,

 Null(T)={X:T(X)=0}.

The term "null space" is most commonly written as two separate words (e.g., Golub and Van Loan 1989, pp. 49 and 602; Zwillinger 1995, p. 128), although other authors write it as a single word "nullspace" (e.g., Anton 1994, p. 259; Robbin 1995, pp. 123 and 180).

Each null space vector corresponds to a zero eigenvector of the transformation matrix of $\it{T}$.

posted @ 2022-02-07 16:14  warnerchang  阅读(145)  评论(0)    收藏  举报