
#include "pch.h"
#include <opencv2/core/core.hpp>
#include "opencv2/imgproc/imgproc.hpp"
#include <opencv2/highgui/highgui.hpp>
#include <iostream>
using namespace cv;
using namespace std;
int main(){
Mat image;
image = imread("1.jpg", IMREAD_COLOR);
if (!image.data){
cout << "Could not open or find the image" << endl;
return -1;
}
// threshold to get mask
int threshold_value = 10;
int max_BINARY_value = 256;
Mat mask;
mask = imread("mask.png", 0);
// mask image
Mat img_masked;
image.copyTo(img_masked, mask);
imshow("image", image);
imshow("mask", mask);
imshow("img_masked", img_masked);
waitKey(0);
return 0;
}
#include <opencv2/opencv.hpp>
#include <opencv2/xfeatures2d.hpp>
#include<opencv2/face.hpp>
#include<iostream>
#include<math.h>
#include <string>
#include<fstream>
using namespace cv::face;
using namespace cv;
using namespace std;
using namespace cv::xfeatures2d;
int main() {
Mat src = imread("/Users/war/Desktop/2.jpeg");
imshow("src", src);
//组装数据
int width = src.cols;
int height = src.rows;
int samplecount = width * height;
int dims = src.channels();
//行数为src的像素点数,列数为通道数,每列数据分别为src的bgr,从上到下 从左到右顺序读数据
Mat points(samplecount, dims, CV_32F, Scalar(10));
int ind = 0;
for (int row = 0; row < height; row++) {
for (int col = 0; col < width; col++) {
ind = row * width + col;//
Vec3b bgr = src.at<Vec3b>(row, col);
points.at<float>(ind, 0) = static_cast<int>(bgr[0]);
points.at<float>(ind, 1) = static_cast<int>(bgr[1]);
points.at<float>(ind, 2) = static_cast<int>(bgr[2]);
}
}
//运行kmeans
int numCluster = 4;
Mat labels;
Mat centers;
TermCriteria criteria = TermCriteria(TermCriteria::EPS + TermCriteria::COUNT, 10, 0.1);
kmeans(points, numCluster, labels, criteria, 3, KMEANS_PP_CENTERS, centers);
//去背景+遮罩生成
Mat mask = Mat::zeros(src.size(), CV_8UC1);
int index = src.rows * 2 + 2;//不取边缘的左上点,往里靠2个位置
int cindex = labels.at<int>(index, 0);
int height1 = src.rows;
int width1 = src.cols;
Mat dst;//人的轮廓周围会有一些杂点,所以需要腐蚀和高斯模糊取干扰
src.copyTo(dst);
for (int row = 0; row < height1; row++) {
for (int col = 0; col < width1; col++) {
index = row * width1 + col;
int label = labels.at<int>(index, 0);
if (label == cindex) {
dst.at<Vec3b>(row, col)[0] = 0;
dst.at<Vec3b>(row, col)[1] = 0;
dst.at<Vec3b>(row, col)[2] = 0;
mask.at<uchar>(row, col) = 0;
}
else {
dst.at<Vec3b>(row, col) = src.at<Vec3b>(row, col);
mask.at<uchar>(row, col) = 255;//人脸部分设为白色,以便于下面的腐蚀与高斯模糊
}
}
}
imshow("dst", dst);
imshow("mask", dst);
//腐蚀+高斯模糊
Mat k = getStructuringElement(MORPH_RECT, Size(3, 3));
erode(mask, mask, k);
GaussianBlur(mask, mask, Size(3, 3), 0, 0);
imshow("gaosimohu", mask);
//通道混合
RNG rng(12345);
Vec3b color;
color[0] = 180;//rng.uniform(0, 255);
color[1] =180;//rng.uniform(0, 255);
color[2] =238;//rng.uniform(0, 255);
Mat result(src.size(), src.type());
double w = 0.0;
int b = 0, g = 0, r = 0;
int b1 = 0, g1 = 0, r1 = 0;
int b2 = 0, g2 = 0, r2 = 0;
double time = getTickCount();
for (int row = 0; row < height1; row++) {
for (int col = 0; col < width; col++) {
int m = mask.at<uchar>(row, col);
if (m == 255) {
result.at<Vec3b>(row, col) = src.at<Vec3b>(row, col);//前景
}
else if (m == 0) {
result.at<Vec3b>(row, col) = color; // 背景
}
else {//因为高斯模糊的关系,所以mask元素的颜色除了黑白色还有黑白边缘经过模糊后的非黑白值
w = m / 255.0;
b1 = src.at<Vec3b>(row, col)[0];
g1 = src.at<Vec3b>(row, col)[1];
r1 = src.at<Vec3b>(row, col)[2];
b2 = color[0];
g2 = color[0];
r2 = color[0];
b = b1 * w + b2 * (1.0 - w);
g = g1 * w + g2 * (1.0 - w);
r = r1 * w + r2 * (1.0 - w);
result.at<Vec3b>(row, col)[0] = b;//最终边缘颜色值
result.at<Vec3b>(row, col)[1] = g;
result.at<Vec3b>(row, col)[2] = r;
}
}
}
cout << "time=" << (getTickCount() - time) / getTickFrequency() << endl;
imshow("backgroud repalce", result);
waitKey(0);
}