昆仑山:眼中无形心中有穴之穴人合一

夫君子之行,静以修身,俭以养德;非澹泊无以明志,非宁静无以致远。夫学须静也,才须学也;非学无以广才,非志无以成学。怠慢则不能励精,险躁则不能冶性。年与时驰,意与岁去,遂成枯落,多不接世。悲守穷庐,将复何及!

 

06 2025 档案

matplotlib中文字体设置
摘要:自动检测中文字体 def setup_chinese_font(): """自动检测并设置可用的中文字体""" chinese_fonts = ["Microsoft YaHei", "FangSong", "KaiTi", "SimHei", "SimSun"] found_font = None 阅读全文

posted @ 2025-06-27 18:02 Indian_Mysore 阅读(11) 评论(0) 推荐(0)

超松弛迭代法求解线性方程组
摘要:import numpy as np import matplotlib.pyplot as plt def sor_solver(A, b, omega, x0, tol=1e-5, max_iterations=200): """ 使用SOR方法求解线性方程组 Ax = b. 参数: A (np 阅读全文

posted @ 2025-06-27 09:53 Indian_Mysore 阅读(11) 评论(0) 推荐(0)

y'=-50y+50x^2+2x,y(0)=1/3,0<=x<=1.步长h=0.001,迭代3次。分别用RK4法,Runge-Kutta-Fehlberg法求解。要求显示详细的演绎计算过程
摘要:import numpy as np import matplotlib.pyplot as plt from matplotlib.ticker import ScalarFormatter # 1. 问题定义 # 定义常微分方程 y' = f(x, y) def f(x, y): """ODE 阅读全文

posted @ 2025-06-24 15:56 Indian_Mysore 阅读(6) 评论(0) 推荐(0)

y'=(2y/x)+(x^2)*(e^x),y(1)=0,1<=x<=2.步长h=0.1,迭代3次。分别用显示4步4阶Adams法,隐式3步4阶亚当斯法,显示4步4阶Milne法,隐式2步4阶Simpson法,隐式3步4阶Hamming法求解。
摘要:显示详细的演绎计算过程 To solve the differential equation \( y' = \frac{2y}{x} + x^2 e^x \) with initial condition \( y(1) = 0 \) over the interval \( 1 \leq x \ 阅读全文

posted @ 2025-06-24 13:22 Indian_Mysore 阅读(7) 评论(0) 推荐(0)

y'=y-(2x/y),y(0)=1,0<=x<=1.步长h=0.05,迭代3次。分别用显示欧拉法,隐式欧拉法,Trapezoid梯形法,middle中点欧拉法,改进欧拉法求解。
摘要:计算过程 Below is a detailed solution to the differential equation \( y' = y - \frac{2x}{y} \) with initial condition \( y(0) = 1 \), over the interval \( 阅读全文

posted @ 2025-06-24 13:05 Indian_Mysore 阅读(5) 评论(0) 推荐(0)

多项式
摘要:\documentclass[12pt]{article} \usepackage[verbose, a4paper, hmargin=2.5cm, vmargin=2.5cm]{geometry} \usepackage{fontspec} \usepackage{ctex} \usepackag 阅读全文

posted @ 2025-06-19 18:07 Indian_Mysore 阅读(9) 评论(0) 推荐(0)

利用 Spring Boot 实现一个文件上传和下载功能的系统
摘要:项目的目录总体结构 pom.xml <?xml version="1.0" encoding="UTF-8"?> <project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchem 阅读全文

posted @ 2025-06-17 14:33 Indian_Mysore 阅读(72) 评论(0) 推荐(0)

centos8+镜像源替换
摘要:/etc/yum.repos.d sed -i s/mirror.centos.org/vault.centos.org/g /etc/yum.repos.d/*.repo sed -i s/^#.*baseurl=http/baseurl=http/g /etc/yum.repos.d/*.rep 阅读全文

posted @ 2025-06-16 14:16 Indian_Mysore 阅读(33) 评论(0) 推荐(0)

导航