对称矩阵

对称矩阵

定义

\[A=A^T \]

\[a_{ij}=a_{ji} \]

性质

如果\(A\)\(B\)都是对称矩阵,那么
\(A-B\)
\(A+B\)
\(AB\), 当\(AB=BA\)
\(A^n\), 当n是自然数
\(A^{-1}\),当逆矩阵存在
就都是对称矩阵

实对称矩阵

\(A\)\(n \times n\)矩阵,\(x\),\(y\)\(R^n\)空间中的元素,\(<,>\)是内积操作符,当

\[<Ax,y> = <x,Ay> , x,y \in R^n \]

时,\(A\)为对称矩阵

  • 在微分几何,黎曼流形,希尔伯特空间中都有重要作用
posted @ 2018-06-17 13:52  AI-Vision-Math-Fans  阅读(973)  评论(0)    收藏  举报