# 运动函数

## 参数

t

b

c

d

namespace ease
{
const real PI = 3.14159265358979323846264338327950288;
real linear( real t, real b, real c, real d)
{
return (t/d)*c + b;
}
real in_quad( real t, real b, real c, real d )
{
return c*(t/=d)*t + b;
}
real out_quad( real t, real b, real c, real d )
{
return -c *(t/=d)*(t-2) + b;
}
real in_out_quad( real t, real b, real c, real d )
{
if ((t/=d/2) < 1) return c/2*t*t + b;
return -c/2 * ((--t)*(t-2) - 1) + b;
}
real in_cubic( real t, real b, real c, real d )
{
return c*(t/=d)*t*t + b;
}
real out_cubic( real t, real b, real c, real d)
{
return c*((t=t/d-1)*t*t + 1) + b;
}
real in_out_cubic( real t, real b, real c, real d)
{
if ((t/=d/2) < 1) return c/2*t*t*t + b;
return c/2*((t-=2)*t*t + 2) + b;
}
real in_quart( real t, real b, real c, real d)
{
return c*(t/=d)*t*t*t + b;
}
real out_quart ( real t, real b, real c, real d)
{
return -c * ((t=t/d-1)*t*t*t - 1) + b;
}
real in_out_quart ( real t, real b, real c, real d)
{
if ((t/=d/2) < 1) return c/2*t*t*t*t + b;
return -c/2 * ((t-=2)*t*t*t - 2) + b;
}
real in_quint ( real t, real b, real c, real d)
{
return c*(t/=d)*t*t*t*t + b;
}
real out_quint ( real t, real b, real c, real d)
{
return c*((t=t/d-1)*t*t*t*t + 1) + b;
}
real in_out_quint( real t, real b, real c, real d)
{
if ((t/=d/2) < 1) return c/2*t*t*t*t*t + b;
return c/2*((t-=2)*t*t*t*t + 2) + b;
}
real in_sine( real t, real b, real c, real d)
{
return -c * cos(t/d * (PI/2)) + c + b;
}
real out_sine( real t, real b, real c, real d)
{
return c * sin(t/d * (PI/2)) + b;
}
real in_out_sine( real t, real b, real c, real d)
{
return -c/2 * (cos(PI*t/d) - 1) + b;
}
real in_expo( real t, real b, real c, real d)
{
return (t==0) ? b : c * pow(2, 10 * (t/d - 1)) + b;
}
real out_expo( real t, real b, real c, real d)
{
return (t==d) ? b+c : c * (-pow(2, -10 * t/d) + 1) + b;
}
real in_out_expo( real t, real b, real c, real d)
{
if (t==0) return b;
if (t==d) return b+c;
if ((t/=d/2) < 1) return c/2 * pow(2, 10 * (t - 1)) + b;
return c/2 * (-pow(2, -10 * --t) + 2) + b;
}
real in_circ( real t, real b, real c, real d)
{
return -c * (sqrt(1 - (t/=d)*t) - 1) + b;
}
real out_circ( real t, real b, real c, real d)
{
return c * sqrt(1 - (t=t/d-1)*t) + b;
}
real in_out_circ( real t, real b, real c, real d)
{
if ((t/=d/2) < 1) return -c/2 * (sqrt(1 - t*t) - 1) + b;
return c/2 * (sqrt(1 - (t-=2)*t) + 1) + b;
}
real in_elastic( real t, real b, real c, real d)
{
real s=1.70158; real p=0; real a=c;
if (t==0) return b;  if ((t/=d)==1) return b+c;  if (!p) p=d*.3;
if (a < abs(c)) { a=c; s=p/4; }
else s = p/(2*PI) * asin (c/a);
return -(a*pow(2,10*(t-=1)) * sin( (t*d-s)*(2*PI)/p )) + b;
}
real out_elastic( real t, real b, real c, real d)
{
real s=1.70158;real p=0;real a=c;
if (t==0) return b;  if ((t/=d)==1) return b+c;  if (!p) p=d*.3;
if (a < abs(c)) { a=c; s=p/4; }
else s = p/(2*PI) * asin (c/a);
return a*pow(2,-10*t) * sin( (t*d-s)*(2*PI)/p ) + c + b;
}
real in_out_elastic( real t, real b, real c, real d)
{
real s=1.70158;real p=0;real a=c;
if (t==0) return b;  if ((t/=d/2)==2) return b+c;  if (!p) p=d*(.3*1.5);
if (a < abs(c)) { a=c; s=p/4; }
else s = p/(2*PI) * asin (c/a);
if (t < 1) return -.5*(a*pow(2,10*(t-=1)) * sin( (t*d-s)*(2*PI)/p )) + b;
return a*pow(2,-10*(t-=1)) * sin( (t*d-s)*(2*PI)/p )*.5 + c + b;
}
real in_back( real t, real b, real c, real d)
{
real s = 1.70158;
return c*(t/=d)*t*((s+1)*t - s) + b;
}
real out_back( real t, real b, real c, real d)
{
real s = 1.70158;
return c*((t=t/d-1)*t*((s+1)*t + s) + 1) + b;
}
real in_out_back( real t, real b, real c, real d)
{
real s = 1.70158;
if ((t/=d/2) < 1) return c/2*(t*t*(((s*=(1.525))+1)*t - s)) + b;
return c/2*((t-=2)*t*(((s*=(1.525))+1)*t + s) + 2) + b;
}

real in_back_x( real t, real b, real c, real d)
{
real s = 1.70158 * 2;
return c*(t/=d)*t*((s+1)*t - s) + b;
}
real out_back_x( real t, real b, real c, real d)
{
real s = 1.70158 * 2;
return c*((t=t/d-1)*t*((s+1)*t + s) + 1) + b;
}
real in_out_back_x( real t, real b, real c, real d)
{
real s = 1.70158 * 2;
if ((t/=d/2) < 1) return c/2*(t*t*(((s*=(1.525))+1)*t - s)) + b;
return c/2*((t-=2)*t*(((s*=(1.525))+1)*t + s) + 2) + b;
}

real in_back_xx( real t, real b, real c, real d)
{
real s = 1.70158 * 3;
return c*(t/=d)*t*((s+1)*t - s) + b;
}
real out_back_xx( real t, real b, real c, real d)
{
real s = 1.70158 * 3;
return c*((t=t/d-1)*t*((s+1)*t + s) + 1) + b;
}
real in_out_back_xx( real t, real b, real c, real d)
{
real s = 1.70158 * 3;
if ((t/=d/2) < 1) return c/2*(t*t*(((s*=(1.525))+1)*t - s)) + b;
return c/2*((t-=2)*t*(((s*=(1.525))+1)*t + s) + 2) + b;
}

real out_bounce( real t, real b, real c, real d)
{
if ((t/=d) < (1/2.75))
return c*(7.5625*t*t) + b;
else if (t < (2/2.75))
return c*(7.5625*(t-=(1.5/2.75))*t + .75) + b;
else if (t < (2.5/2.75))
return c*(7.5625*(t-=(2.25/2.75))*t + .9375) + b;
else
return c*(7.5625*(t-=(2.625/2.75))*t + .984375) + b;
}
real in_bounce( real t, real b, real c, real d)
{
return c - out_bounce ( d-t, 0, c, d) + b;
}
real in_out_bounce( real t, real b, real c, real d)
{
if (t < d/2) return in_bounce ( t*2, 0, c, d ) * .5 + b;
return out_bounce ( t*2-d, 0, c, d ) * .5 + c*.5 + b;
}

function *get_ease_func(const ustring& name)
{
static hash_table<ustring,function*> tbl;
if(tbl.size() == 0)
{
tbl[L"linear"] = &linear;
tbl[L"cubic-in"] = &in_cubic;
tbl[L"cubic-out"] = &out_cubic;
tbl[L"cubic-in-out"] = &in_out_cubic;
tbl[L"quart-in"] = &in_quart;
tbl[L"quart-out"] = &out_quart ;
tbl[L"quart-in-out"] = &in_out_quart ;
tbl[L"quint-in"] = &in_quint ;
tbl[L"quint-out"] = &out_quint ;
tbl[L"quint-in-out"] = &in_out_quint;
tbl[L"sine-in"] = &in_sine;
tbl[L"sine-out"] = &out_sine;
tbl[L"sine-in-out"] = &in_out_sine;
tbl[L"expo-in"] = &in_expo;
tbl[L"expo-out"] = &out_expo;
tbl[L"expo-in-out"] = &in_out_expo;
tbl[L"circ-in"] = &in_circ;
tbl[L"circ-out"] = &out_circ;
tbl[L"circ-in-out"] = &in_out_circ;
tbl[L"elastic-in"] = &in_elastic;
tbl[L"elastic-out"] = &out_elastic;
tbl[L"elastic-in-out"] = &in_out_elastic;
tbl[L"back-in"] = &in_back;
tbl[L"back-out"] = &out_back;
tbl[L"back-in-out"] = &in_out_back;
tbl[L"x-back-in"] = &in_back_x;
tbl[L"x-back-out"] = &out_back_x;
tbl[L"x-back-in-out"] = &in_out_back_x;
tbl[L"xx-back-in"] = &in_back_xx;
tbl[L"xx-back-out"] = &out_back_xx;
tbl[L"xx-back-in-out"] = &in_out_back_xx;
tbl[L"bounce-in"] = &out_bounce;
tbl[L"bounce-out"] = &in_bounce;
tbl[L"bounce-in-out"] = &in_out_bounce;
}
function* pf = 0;
tbl.find(name,pf);
return pf;
}
}

posted @ 2014-04-16 20:41  不是很难  阅读(430)  评论(0编辑  收藏  举报