#include<iostream>
#include<cstdio>
#include<cmath>
#include<algorithm>
#include<cstring>
using namespace std;
typedef double dd;
const dd pi=acos(0.0)*2;
#define N 400005
struct P{
dd x,y;
P(dd A=0.0,dd B=0.0){
x=A;
y=B;
}
P operator+(P a){
return P(x+a.x,y+a.y);
}
P operator-(P a){
return P(x-a.x,y-a.y);
}
P operator*(P a){
return P(x*a.x-y*a.y,x*a.y+y*a.x);
}
}a[N],b[N],w[2][N];
int n,na,nb,rev[N];
void FFT(P *a,int f){
int i,j,k,t,l;
P x,y;
for(i=0;i<n;i++)if(i<rev[i])swap(a[i],a[rev[i]]);
for(i=1;i<n;i<<=1)
for(j=0,t=n/(i<<1);j<n;j+=i<<1)
for(k=l=0;k<i;k++,l+=t){
x=w[f][l]*a[j+k+i];
y=a[j+k];
a[j+k]=y+x;
a[j+k+i]=y-x;
}
if(f)for(i=0;i<n;i++)a[i].x/=n;
}
void prepare(){
int i,j,x,y;
for(i=0;i<n;i++){
x=i,y=0;
for(j=1;j<n;x>>=1,j<<=1)(y<<=1)|=x&1;
rev[i]=y;
}
for(i=0;i<n;i++){
w[0][i]=P(cos(2*pi*i/n),sin(2*pi*i/n));
w[1][i]=P(cos(2*pi*i/n),-sin(2*pi*i/n));
}
}
void mult(){
int i;
prepare();
FFT(a,0);
FFT(b,0);
for(i=0;i<n;i++)a[i]=a[i]*b[i];
FFT(a,1);
}
dd x[N],ans[N];
int nn;
int main(){
scanf("%d",&nn);
int i;
for(i=0;i<nn;i++)scanf("%lf",&x[i]);
for(n=1;n<nn;n<<=1);
n<<=1;
for(i=1;i<nn;i++)b[i]=P(1.0/i/i,0);
for(i=0;i<nn;i++)a[i]=P(x[i],0);
mult();
for(i=0;i<nn;i++)ans[i]+=a[i].x;
for(i=0;i<n;i++)a[i]=b[i]=P(0,0);
for(i=1;i<nn;i++)b[i]=P(1.0/i/i,0);
for(i=0;i<nn;i++)a[i]=P(x[nn-i-1],0);
mult();
for(i=0;i<nn;i++)ans[i]-=a[nn-i-1].x;
for(i=0;i<nn;i++)printf("%.3lf\n",ans[i]);
}