先说几句:

如果这道题有哪个神仙用单次O(n\log n)O(nlogn)的复杂度过了, 我请您抽烟

欢迎大佬dd垃圾标算

本片题解中有部分地方由于人懒所以复制粘贴的时候tdtd没有换成TT, 请各位大佬自行替换一下吧(有时间再补锅)


首先对于 1010 分的数据可以直接暴力求。

然后如果打出一张 gcdgcd 的表,然后 n^3n3 模拟预处理就可以获得 3030 分。

首先,我们注意到原式可以化为下面这样:

\prod_{i=1}^{A}\prod_{j=1}^{B}\prod_{k=1}^{C} \left(\frac{lcm(i,j)}{gcd(i,k)}\right)^{f(type)}i=1Aj=1Bk=1C(gcd(i,k)lcm(i,j))f(type)

\prod_{i=1}^{A}\prod_{j=1}^{B}\prod_{k=1}^{C} \left(\frac{i\times j}{gcd(i,j)\times gcd(i,k)}\right)^{f(type)}i=1Aj=1Bk=1C(gcd(i,j)×gcd(i,k)i×j)f(type)

然后,显然可以分为两个子问题:

\prod_{i=1}^{A}\prod_{j=1}^{B}\prod_{k=1}^{C} i^{f(type)}i=1Aj=1Bk=1Cif(type)

\prod_{i=1}^{A}\prod_{j=1}^{B}\prod_{k=1}^{C} gcd(i,j)^{f(type)}i=1Aj=1Bk=1Cgcd(i,j)f(type)

然后我们就根据 typetype 分别推一推式子吧=-=

{\rm type=0}type=0

我们先来看看第一个式子吧:

\prod_{i=1}^{A}\prod_{j=1}^{B}\prod_{k=1}^{C} ii=1Aj=1Bk=1Ci

\prod_{i=1}^{A}\prod_{j=1}^{B} i^{C}i=1Aj=1BiC

\left(\prod_{i=1}^{A}i\right)^{B \times C}(i=1Ai)B×C

预处理一个阶乘,写个快速幂就完事了=-=

然后就是第二个式子了。

\left(\prod_{i=1}^{A}\prod_{j=1}^{B} gcd(i,j)\right)^{C}(i=1Aj=1Bgcd(i,j))C

然后这就可以过10^3103了。。然后就可以得到12分了=-=

然后就可以反演了=-=

如果不会莫比乌斯反演,那么就请先科普完莫比乌斯反演并且推了几道题后再来看这篇题解。

然后继续吧。

\left(\prod_{i=1}^{A}\prod_{j=1}^{B} gcd(i,j)\right)^{C}(i=1Aj=1Bgcd(i,j))C

\left(\prod_{d=1}d^{\sum_{i=1}^{A/d}\sum_{j=1}^{B/d} [gcd(i,j)=1]}\right)^{C}(d=1di=1A/dj=1B/d[gcd(i,j)=1])C

\left(\prod_{d=1}d^{\sum_{t=1}\mu(t)\left\lfloor\frac{A}{td}\right\rfloor\left\lfloor\frac{B}{td}\right\rfloor}\right)^{C}(d=1dt=1μ(t)tdAtdB)C

\left(\prod_{T=1}\left(\prod_{d|T}d^{\mu(\frac{T}{d})}\right)^{\left\lfloor\frac{A}{td}\right\rfloor\left\lfloor\frac{B}{td}\right\rfloor}\right)^{C}T=1dTdμ(dT)tdAtdBC

显然中间的式子可以像狄利克雷卷积一样 O(n\log n)O(nlogn) 预处理出来, 然后整除分块可以 O(\sqrt{n}\log n)O(nlogn) 做掉.

这两个式子结合一下就有 2020 分了.

{\rm type=1}type=1

一样,我们先来考虑第一个式子.

\prod_{i=1}^{A}\prod_{j=1}^{B}\prod_{k=1}^{C} i^{i \times j \times k}i=1Aj=1Bk=1Cii×j×k

\prod_{i=1}^{A}\prod_{j=1}^{B} i^{i \times j \times \sum_{k=1}^{C}k}i=1Aj=1Bii×j×k=1Ck

\prod_{i=1}^{A} i^{i \times (\sum_{j=1}^{B}j) \times (\sum_{k=1}^{C}k)}i=1Aii×(j=1Bj)×(k=1Ck)

\left(\prod_{i=1}^{A} i^i\right)^{F(B) \times F(C)}(i=1Aii)F(B)×F(C)

其中: F(x)=\frac{x \times (x + 1)}{2}F(x)=2x×(x+1)

这个东西可以 O(n\log n)O(nlogn) 预处理一下, 再加上快速幂就行了.

记得指数上要对 mod-1mod1 取模

然后考虑第二个式子..

\prod_{i=1}^{A}\prod_{j=1}^{B}\prod_{k=1}^{C} gcd(i,j)^{i \times j \times k}i=1Aj=1Bk=1Cgcd(i,j)i×j×k

\left(\prod_{i=1}^{A}\prod_{j=1}^{B} gcd(i,j)^{i \times j}\right)^{F(C)}(i=1Aj=1Bgcd(i,j)i×j)F(C)

这里就能做 n \leq 10^3n103 的数据了..

大概用 O(n^2\log n)O(n2logn) 的时间打一个 n^2n2 的表, 然后预处理矩阵的前缀积, 询问直接 O(1)O(1) 查表后加上一个 F(C)F(C) 的快速幂就行了..

然后继续推:

\left(\prod_{d=1}d^{d^2\sum_{i=1}^{A/d}\sum_{j=1}^{B/d} i \times j \times [gcd(i, j)=1]}\right)^{F(C)}(d=1dd2i=1A/dj=1B/di×j×[gcd(i,j)=1])F(C)

\left(\prod_{d=1}d^{\sum_{t=1}d^2\mu(t)t^2F(\left\lfloor\frac{A}{td}\right\rfloor)F(\left\lfloor\frac{B}{td}\right\rfloor)}\right)^{F(C)}(d=1dt=1d2μ(t)t2F(tdA)F(tdB))F(C)

\left(\prod_{T=1}\left( \left(\prod_{d|T} d^{\mu(\frac{T}{d})}\right)^{T^2} \right)^{F(\left\lfloor\frac{A}{td}\right\rfloor)F(\left\lfloor\frac{B}{td}\right\rfloor)}\right)^{F(C)}T=1dTdμ(dT)T2F(tdA)F(tdB)F(C)

虽然式子看上去麻烦了一点...但是还是能预处理的..

中间那一坨 \left(\prod_{d|T} d^{\mu(\frac{T}{d})}\right)^{T^2}(dTdμ(dT))T2 可以用类似狄利克雷卷积的办法预处理,复杂度还是 O(n \log n)O(nlogn)。

然后预处理一个前缀积以及逆元啥的就能单次询问 O(\sqrt{n} \log n)O(nlogn) 了。

结合以上的所有算法, 可以得到 6060 分。

{\rm type=2}type=2

还是先康康第一个式子:

\prod_{i=1}^{A}\prod_{j=1}^{B}\prod_{k=1}^{C} i^{gcd(i,j,k)}i=1Aj=1Bk=1Cigcd(i,j,k)

考虑反演:

\prod_{d=1}\prod_{i=1}^{A/d}(id)^{d\sum_{j=1}^{B/d}\sum_{k=1}^{C/d}[gcd(i,j,k)=1]}d=1i=1A/d(id)dj=1B/dk=1C/d[gcd(i,j,k)=1]

\prod_{d=1}\prod_{t=1}\prod_{i=1}^{A/td}(itd)^{\mu(t)d \left\lfloor\frac{B}{td}\right\rfloor\left\lfloor\frac{C}{td}\right\rfloor}d=1t=1i=1A/td(itd)μ(t)dtdBtdC

\prod_{T=1}\left(\prod_{d|T}\left(fac(\lfloor\frac{A}{T}\rfloor) \times T^{\left\lfloor\frac{A}{T}\right\rfloor}\right)^{\mu(\frac{T}{d})d }\right)^{\left\lfloor\frac{B}{T}\right\rfloor\left\lfloor\frac{C}{T}\right\rfloor}T=1dT(fac(TA)×TTA)μ(dT)dTBTC

\prod_{T=1}\left(\left(fac(\lfloor\frac{A}{T}\rfloor) \times T^{\left\lfloor\frac{A}{T}\right\rfloor}\right)^{\sum_{d|T}\mu(\frac{T}{d})d }\right)^{\left\lfloor\frac{B}{T}\right\rfloor\left\lfloor\frac{C}{T}\right\rfloor}T=1((fac(TA)×TTA)dTμ(dT)d)TBTC

\prod_{T=1}\left(\left(fac(\lfloor\frac{A}{T}\rfloor) \times T^{\left\lfloor\frac{A}{T}\right\rfloor}\right)^{\varphi(T)}\right)^{\left\lfloor\frac{B}{T}\right\rfloor\left\lfloor\frac{C}{T}\right\rfloor}T=1((fac(TA)×TTA)φ(T))TBTC

然后对于 T^{\varphi(T)}Tφ(T) 做个前缀积以及逆元的预处理就行了...再预处理一个模mod-1mod1 意义下的 \varphi(T)φ(T) 的前缀和, 做整除分块的时候 \frac{A}{T}TA 的指数.

然后考虑第二个式子.

我们考虑枚举 gcd(i,j)gcd(i,j)

\prod_{i=1}^{A}\prod_{j=1}^{B}\prod_{k=1}^{C} gcd(i,j)^{gcd(i,j,k)}i=1Aj=1Bk=1Cgcd(i,j)gcd(i,j,k)

\prod_{d=1}d^{\sum_{i=1}^{A/d}\sum_{j=1}^{B/d}[gcd(i,j)=1] \times \sum_{k=1}^{C} gcd(d,k)}d=1di=1A/dj=1B/d[gcd(i,j)=1]×k=1Cgcd(d,k)

\prod_{d=1}d^{\left(\sum_{t=1}\mu(t)\left\lfloor\frac{A}{td}\right\rfloor\left\lfloor\frac{B}{td}\right\rfloor\right) \times \left(\sum_{k=1}^{C} gcd(d,k)\right)}d=1d(t=1μ(t)tdAtdB)×(k=1Cgcd(d,k))

\prod_{T=1}\left(\prod_{d|T}d^{\mu(\frac{T}{d}) \times \left(\sum_{k=1}^{C} gcd(d,k)\right)}\right)^{\left\lfloor\frac{A}{T}\right\rfloor\left\lfloor\frac{B}{T}\right\rfloor}T=1dTdμ(dT)×(k=1Cgcd(d,k))TATB

把里面那个gcdgcd的式子拿出来:

\sum_{k=1}^{C} gcd(d,k)k=1Cgcd(d,k)

\sum_{d'|d}d'\sum_{k=1}^{C/d'} [gcd(\frac{d}{d'},k) = 1]dddk=1C/d[gcd(dd,k)=1]

\sum_{d'|d}d'\sum_{t'|\frac{d}{d'}}\mu(t')\left\lfloor\frac{C}{t'd'}\right\rfloordddtddμ(t)tdC

\sum_{T' |d}\left\lfloor\frac{C}{T'}\right\rfloor\varphi(T')TdTCφ(T)

然后套回去..

这样大概能拿个n \leq 1000n1000的分数.

其实..我们如果把它套回到前一个式子里头:

\prod_{d=1}d^{\left(\sum_{t=1}\mu(t)\left\lfloor\frac{A}{td}\right\rfloor\left\lfloor\frac{B}{td}\right\rfloor\right) \times \left(\sum_{T'|d}\left\lfloor\frac{C}{T'}\right\rfloor\varphi(T')\right)}d=1d(t=1μ(t)tdAtdB)×(TdTCφ(T))

你会发现,它可以用O(n \log n)O(nlogn)的时间复杂度完成...

如果你常数牛逼过了我请你抽烟

当然还有另外一种做法: 枚举gcd(i,j,k)gcd(i,j,k)

\prod_{i=1}^{A}\prod_{j=1}^{B}\prod_{k=1}^{C} gcd(i,j)^{gcd(i,j,k)}i=1Aj=1Bk=1Cgcd(i,j)gcd(i,j,k)

\prod_{d=1}\prod_{i=1}^{A/d}\prod_{j=1}^{B/d} (d \times gcd(i,j))^{d\sum_{k=1}^{C/d}[gcd(i,j,k)=1]}d=1i=1A/dj=1B/d(d×gcd(i,j))dk=1C/d[gcd(i,j,k)=1]

\prod_{d=1}\prod_{t=1}\prod_{i=1}^{A/td}\prod_{j=1}^{B/td} (td \times gcd(i,j))^{\mu(t)d\left\lfloor\frac{C}{td}\right\rfloor}d=1t=1i=1A/tdj=1B/td(td×gcd(i,j))μ(t)dtdC

然后我们把底数的td分离出来:

\left(\prod_{d=1}\prod_{t=1}(td)^{\mu(t)d\left\lfloor\frac{A}{td}\right\rfloor\left\lfloor\frac{B}{td}\right\rfloor\left\lfloor\frac{C}{td}\right\rfloor}\right) \times \left(\prod_{d=1}\prod_{t=1}\prod_{i=1}^{A/td}\prod_{j=1}^{B/td} gcd(i,j)^{\mu(t)d\left\lfloor\frac{C}{td}\right\rfloor}\right)(d=1t=1(td)μ(t)dtdAtdBtdC)×d=1t=1i=1A/tdj=1B/tdgcd(i,j)μ(t)dtdC

然后把前面一坨式子拿出来:

\prod_{d=1}\prod_{t=1}(td)^{\mu(t)d\left\lfloor\frac{A}{td}\right\rfloor\left\lfloor\frac{B}{td}\right\rfloor\left\lfloor\frac{C}{td}\right\rfloor}d=1t=1(td)μ(t)dtdAtdBtdC

\prod_{T=1}T^{\left\lfloor\frac{A}{td}\right\rfloor\left\lfloor\frac{B}{td}\right\rfloor\left\lfloor\frac{C}{td}\right\rfloor\sum_{d|T}\mu(\frac{T}{d})d}T=1TtdAtdBtdCdTμ(dT)d

\prod_{T=1}(T^{\varphi(T)})^{\left\lfloor\frac{A}{td}\right\rfloor\left\lfloor\frac{B}{td}\right\rfloor\left\lfloor\frac{C}{td}\right\rfloor}T=1(Tφ(T))tdAtdBtdC

然后我们拿出前面 i^{gcd(i,j,k)}igcd(i,j,k) 的部分:

\prod_{T=1}\left(\left(fac(\lfloor\frac{A}{T}\rfloor) \times T^{\left\lfloor\frac{A}{T}\right\rfloor}\right)^{\varphi(T)}\right)^{\left\lfloor\frac{B}{T}\right\rfloor\left\lfloor\frac{C}{T}\right\rfloor}T=1((fac(TA)×TTA)φ(T))TBTC

也把底数拿出来:

\left(\prod_{T=1}\left(fac(\lfloor\frac{A}{T}\rfloor)\right)^{\varphi(T)\left\lfloor\frac{B}{T}\right\rfloor\left\lfloor\frac{C}{T}\right\rfloor}\right) \times \left(\prod_{T=1}\left(T^{\varphi(T)}\right)^{\left\lfloor\frac{A}{T}\right\rfloor\left\lfloor\frac{B}{T}\right\rfloor\left\lfloor\frac{C}{T}\right\rfloor}\right)(T=1(fac(TA))φ(T)TBTC)×(T=1(Tφ(T))TATBTC)

然后发现后面一坨东西是可以约掉的...然后我们就变成了分别计算下面两个部分:

\prod_{T=1}\left(fac(\lfloor\frac{A}{T}\rfloor)\right)^{\varphi(T)\left\lfloor\frac{B}{T}\right\rfloor\left\lfloor\frac{C}{T}\right\rfloor}T=1(fac(TA))φ(T)TBTC

\prod_{d=1}\prod_{t=1}\prod_{i=1}^{A/td}\prod_{j=1}^{B/td} gcd(i,j)^{\mu(t)d\left\lfloor\frac{C}{td}\right\rfloor}d=1t=1i=1A/tdj=1B/tdgcd(i,j)μ(t)dtdC

显然第一个式子已经可以整除分块做了..

但是第二个还需要再搞搞...

\prod_{d=1}\prod_{t=1}\prod_{d'=1}\prod_{t'=1} (d't')^{\mu(t')\mu(t)d\left\lfloor\frac{C}{td}\right\rfloor\left\lfloor\frac{A}{tt'dd'}\right\rfloor\left\lfloor\frac{B}{tt'dd'}\right\rfloor}d=1t=1d=1t=1(dt)μ(t)μ(t)dtdCttddAttddB

\prod_{T=1}\left(\prod_{T'=1} \left(\prod_{d|T'}d^{\mu(\frac{T'}{d})}\right)^{\left\lfloor\frac{A}{TT'}\right\rfloor\left\lfloor\frac{B}{TT'}\right\rfloor}\right)^{\varphi(T)\left\lfloor\frac{C}{td}\right\rfloor}T=1T=1dTdμ(dT)TTATTBφ(T)tdC

预处理出中间那一坨\prod_{d|T'}d^{\mu(\frac{T'}{d})}dTdμ(dT)之后, 可以两次整除分块O(n^{0.75} \log n)O(n0.75logn)做掉了.