k-近邻算法(KNN)识别手写数字
k-近邻算法(KNN)
目录 trainingDigits 中包含了大约 2000 个例子,每个例子内容如下图所示,每个数字大约有 200 个样本;目录 testDigits 中包含了大约 900 个测试数据。
将一个32x32的二进制图像矩阵转化为1x1024的向量。
函数img2vector,将图像转化为向量,该函数创建1x1024的数组,然后打开给定的文件,循环读出文件的前32行,并将每行的头32个字值存储在NumPy数组种,最后返回数组。
#将图像文本数据转换为向量
def img2vector(filename):
returnVect = zeros((1,1024))
fr = open(filename)
for i in range(32):
lineStr = fr.readline()
for j in range(32):
returnVect[0,32*i+j] = int(lineStr[j])
return returnVect
将这些数据输入到分类器,检测分类器的执行效果。
#测试算法
def handwritingClassTest():
hwLabels = []
trainingFileList = listdir('trainingDigits') #加载训练集
m = len(trainingFileList)
trainingMat = zeros((m,1024))
for i in range(m):
fileNameStr = trainingFileList[i]
fileStr = fileNameStr.split('.')[0]
classNumStr = int(fileStr.split('_')[0])
hwLabels.append(classNumStr)
trainingMat[i,:] = img2vector('trainingDigits/%s' % fileNameStr)
testFileList = listdir('testDigits') #遍历
errorCount = 0.0
mTest = len(testFileList)
for i in range(mTest):
fileNameStr = testFileList[i]
fileStr = fileNameStr.split('.')[0]
classNumStr = int(fileStr.split('_')[0])
vectorUnderTest = img2vector('testDigits/%s' % fileNameStr)
classifierResult = classify0(vectorUnderTest, trainingMat, hwLabels, 3)
print "the classifier came back with: %d, the real answer is: %d" % (classifierResult, classNumStr)
if (classifierResult != classNumStr): errorCount += 1.0
print "\nthe total number of errors is: %d" % errorCount
print "\nthe total error rate is: %f" % (errorCount/float(mTest))
测试算法:编写函数使用提供的部分数据集作为测试样本,如果预测分类与实际类别不同,则标记为一个错误
classify0)()函数有4个参数:用于分类的输入向量是inX,训练集为dataSet,标签向量为labels,,k表示用于选择最近邻居的数目,其中标签向量的元素数目和矩阵dataSet的行数相同。
def classify0(inX, dataSet, labels, k):
dataSetSize = dataSet.shape[0]
diffMat = tile(inX, (dataSetSize,1)) - dataSet #把inX二维数组化,dataSetSize表示生成数组后的行数,1表示列的倍数。实现了矩阵之间的减法。
sqDiffMat = diffMat**2
sqDistances = sqDiffMat.sum(axis=1)。#axis=1:参数等于1,矩阵中行之间的数的求和
distances = sqDistances**0.5
sortedDistIndicies = distances.argsort() #argsort():对一个数组进行非降序排序
classCount={}
for i in range(k):
voteIlabel = labels[sortedDistIndicies[i]]
#访问下标键为voteIlabel的项
classCount[voteIlabel] = classCount.get(voteIlabel,0) + 1
sortedClassCount = sorted(classCount.iteritems(), key=operator.itemgetter(1), reverse=True)
return sortedClassCount[0][0]
代码
from numpy import *
import operator
from os import listdir
def classify0(inX, dataSet, labels, k):
dataSetSize = dataSet.shape[0]
diffMat = tile(inX, (dataSetSize,1)) - dataSet #把inX二维数组化,dataSetSize表示生成数组后的行数,1表示列的倍数。实现了矩阵之间的减法。
sqDiffMat = diffMat**2
sqDistances = sqDiffMat.sum(axis=1)。#axis=1:参数等于1,矩阵中行之间的数的求和
distances = sqDistances**0.5
sortedDistIndicies = distances.argsort() #argsort():对一个数组进行非降序排序
classCount={}
for i in range(k):
voteIlabel = labels[sortedDistIndicies[i]]
#访问下标键为voteIlabel的项
classCount[voteIlabel] = classCount.get(voteIlabel,0) + 1
sortedClassCount = sorted(classCount.iteritems(), key=operator.itemgetter(1), reverse=True)
return sortedClassCount[0][0]
#将图像文本数据转换为向量
def img2vector(filename):
returnVect = zeros((1,1024))
fr = open(filename)
for i in range(32):
lineStr = fr.readline()
for j in range(32):
returnVect[0,32*i+j] = int(lineStr[j])
return returnVect
#测试算法
def handwritingClassTest():
hwLabels = []
trainingFileList = listdir('trainingDigits') #加载训练集
m = len(trainingFileList)
trainingMat = zeros((m,1024))
for i in range(m):
fileNameStr = trainingFileList[i]
fileStr = fileNameStr.split('.')[0]
classNumStr = int(fileStr.split('_')[0])
hwLabels.append(classNumStr)
trainingMat[i,:] = img2vector('trainingDigits/%s' % fileNameStr)
testFileList = listdir('testDigits') #遍历
errorCount = 0.0
mTest = len(testFileList)
for i in range(mTest):
fileNameStr = testFileList[i]
fileStr = fileNameStr.split('.')[0]
classNumStr = int(fileStr.split('_')[0])
vectorUnderTest = img2vector('testDigits/%s' % fileNameStr)
classifierResult = classify0(vectorUnderTest, trainingMat, hwLabels, 3)
print "the classifier came back with: %d, the real answer is: %d" % (classifierResult, classNumStr)
if (classifierResult != classNumStr): errorCount += 1.0
print "\nthe total number of errors is: %d" % errorCount
print "\nthe total error rate is: %f" % (errorCount/float(mTest))
运行:
>>> import kNN >>> kNN.handwritingClassTest() the classifier came back with: 4, the real answer is: 4 the classifier came back with: 4, the real answer is: 4 . . . the classifier came back with: 3, the real answer is: 3 the total number of errors is: 11 the total error rate is: 0.011628

浙公网安备 33010602011771号