静雅斋数学

成就 更优秀的你

Desmos 3D&Geogebra | 向量计算的工具化

前言

【2024高一数学专题训练题】在平行四边形 \(ABCD\) 中,\(AB=2BC=2\)\(\angle DAB=60^{\circ}\)\(E\)\(BC\)的中点,\(F\)\(CE\)的中点,延长 \(DF\)\(BC\) 于点 \(M\) ,则 \(\qquad\)

$A.\quad$$\overrightarrow{DF}=\cfrac{3}{4}\overrightarrow{AB}-\cfrac{1}{4}\overrightarrow{AD}$
$B.\quad$$\overrightarrow{AC}//\bigg(\overrightarrow{EB}+\cfrac{3}{2}\overrightarrow{BM}\bigg)$
$C.\quad$$\bigg(2\overrightarrow{DF}-\cfrac{1}{2}\overrightarrow{AB}\bigg)\perp\overrightarrow{MC}$
$D.\quad\overrightarrow{AF}\cdot\overrightarrow{AM}=\cfrac{47}{12}$

参考:正确答案是 \(B\)\(C\)\(D\) .

1、前期准备:以 \(A\) 为坐标原点,以 \(AB\) 所在直线为 \(x\) 轴,以与 \(AB\) 垂直的直线为 \(y\) 轴,建立平面直角坐标系,将各点坐标化如下,

计算得到 \(A(0,0)\)\(B(2,0)\)\(C(\cfrac{5}{2},\cfrac{\sqrt{3}}{2})\)\(D(\cfrac{1}{2},\cfrac{\sqrt{3}}{2})\)\(E(1,0)\)\(F(\cfrac{7}{4},\cfrac{\sqrt{3}}{4})\)\(M(\cfrac{13}{6},\cfrac{\sqrt{3}}{6})\)[1]

2、软件名称: Desmos 3D;同类型软件 Geogebra ;

3、软件地址:https://www.desmos.com/3d?lang=zh-CN

4、软件使用:

向量的输入格式,平面向量 \(v_1=((0,1),(1,2))\),空间向量 \(v_1=((0,1),(1,2),(3,4))\)

5、说明: 对于 \(C\) 选项,手工计算的结果是 \(\vec{V_2}\cdot\vec{V_{MC}}=0\),但是由于浮点运算+近似计算的缘故,机器计算的结果是 \(\vec{V_2}\cdot\vec{V_{MC}}\)\(=\)\(2.7755575616\)\(\times\)\(10^{-16}\)\(\neq\)\(0\)

Desmos 3D 计算示例

Geogebra 计算示例


  1. 难点是求点 \(M\) 的坐标,先求 \(\overrightarrow{DF}\)\(\overrightarrow{DF}\)\(=\)\(\overrightarrow{DC}\)\(+\)\(\overrightarrow{CF}\)\(=\)\(\overrightarrow{AB}\)\(+\)\(\cfrac{1}{2}\overrightarrow{CE}\)\(=\)\(\overrightarrow{AB}\)\(+\)\(\cfrac{1}{2}(\overrightarrow{CB}\)\(+\)\(\overrightarrow{BE})\)\(=\)\(\cfrac{3}{4}\overrightarrow{AB}\)\(-\)\(\cfrac{1}{2}\overrightarrow{AD}\)
    \(\overrightarrow{BM}\)\(=\)\(\lambda\overrightarrow{BC}\)\(=\)\(\lambda\overrightarrow{AD}\),则 \(\overrightarrow{DM}\)\(=\)\(\overrightarrow{AM}\)\(-\)\(\overrightarrow{AD}\)\(=\)\(\overrightarrow{AB}\)\(+\)\(\overrightarrow{BM}\)\(-\)\(\overrightarrow{AD}\)\(=\)\(\overrightarrow{AB}\)\(+\)\((\lambda-1)\overrightarrow{AD}\)
    由向量 \(\overrightarrow{DF}\)\(\overrightarrow{DM}\) 共线,则 \(\cfrac{3}{4}\times(\lambda-1)-1\times(-\cfrac{1}{2})=0\) ,解得 \(\lambda=\cfrac{1}{3}\)
    设点 \(M(x,y)\) ,则由 \(\overrightarrow{BM}=\lambda\overrightarrow{BC}\),得到 \((x-2,y-0)=\cfrac{1}{3}(\cfrac{5}{2}-2,\cfrac{\sqrt{3}}{2}-0)\),解得 \(M(\cfrac{13}{6},\cfrac{\sqrt{3}}{6})\)↩︎

posted @ 2024-03-16 20:33  静雅斋数学  阅读(633)  评论(0)    收藏  举报

休息时间到! ☕️

您已经专注工作了45分钟
建议起身活动或补充水分

—— 静雅斋