Desmos 3D&Geogebra | 向量计算的工具化
前言
参考:正确答案是 \(B\)、 \(C\)、 \(D\) .
1、前期准备:以 \(A\) 为坐标原点,以 \(AB\) 所在直线为 \(x\) 轴,以与 \(AB\) 垂直的直线为 \(y\) 轴,建立平面直角坐标系,将各点坐标化如下,

计算得到 \(A(0,0)\) , \(B(2,0)\) , \(C(\cfrac{5}{2},\cfrac{\sqrt{3}}{2})\) , \(D(\cfrac{1}{2},\cfrac{\sqrt{3}}{2})\) , \(E(1,0)\) , \(F(\cfrac{7}{4},\cfrac{\sqrt{3}}{4})\) , \(M(\cfrac{13}{6},\cfrac{\sqrt{3}}{6})\) ,[1]
2、软件名称: Desmos 3D;同类型软件 Geogebra ;
3、软件地址:https://www.desmos.com/3d?lang=zh-CN
4、软件使用:
向量的输入格式,平面向量 \(v_1=((0,1),(1,2))\),空间向量 \(v_1=((0,1),(1,2),(3,4))\),
5、说明: 对于 \(C\) 选项,手工计算的结果是 \(\vec{V_2}\cdot\vec{V_{MC}}=0\),但是由于浮点运算+近似计算的缘故,机器计算的结果是 \(\vec{V_2}\cdot\vec{V_{MC}}\)\(=\)\(2.7755575616\)\(\times\)\(10^{-16}\)\(\neq\)\(0\),
Desmos 3D 计算示例
Geogebra 计算示例
难点是求点 \(M\) 的坐标,先求 \(\overrightarrow{DF}\),\(\overrightarrow{DF}\)\(=\)\(\overrightarrow{DC}\)\(+\)\(\overrightarrow{CF}\)\(=\)\(\overrightarrow{AB}\)\(+\)\(\cfrac{1}{2}\overrightarrow{CE}\)\(=\)\(\overrightarrow{AB}\)\(+\)\(\cfrac{1}{2}(\overrightarrow{CB}\)\(+\)\(\overrightarrow{BE})\)\(=\)\(\cfrac{3}{4}\overrightarrow{AB}\)\(-\)\(\cfrac{1}{2}\overrightarrow{AD}\),
设 \(\overrightarrow{BM}\)\(=\)\(\lambda\overrightarrow{BC}\)\(=\)\(\lambda\overrightarrow{AD}\),则 \(\overrightarrow{DM}\)\(=\)\(\overrightarrow{AM}\)\(-\)\(\overrightarrow{AD}\)\(=\)\(\overrightarrow{AB}\)\(+\)\(\overrightarrow{BM}\)\(-\)\(\overrightarrow{AD}\)\(=\)\(\overrightarrow{AB}\)\(+\)\((\lambda-1)\overrightarrow{AD}\),
由向量 \(\overrightarrow{DF}\)、\(\overrightarrow{DM}\) 共线,则 \(\cfrac{3}{4}\times(\lambda-1)-1\times(-\cfrac{1}{2})=0\) ,解得 \(\lambda=\cfrac{1}{3}\),
设点 \(M(x,y)\) ,则由 \(\overrightarrow{BM}=\lambda\overrightarrow{BC}\),得到 \((x-2,y-0)=\cfrac{1}{3}(\cfrac{5}{2}-2,\cfrac{\sqrt{3}}{2}-0)\),解得 \(M(\cfrac{13}{6},\cfrac{\sqrt{3}}{6})\) , ↩︎

使用在线软件 Desmos 3D&Geogebra,将向量的线性运算和数量积运算工具化。
浙公网安备 33010602011771号