三角函数习题02

前言

典例剖析

【2015\(\cdot\)全国卷Ⅰ】在平面四边形\(ABCD\)中,\(\angle A=\angle B=\angle C=75^{\circ}\)\(BC=2\),则\(AB\)的取值范围是___________。

分析:本题目非常特别,依据题意我们做出的图形是平面四边形,

当我们将边\(AD\)平行移动时,题目的已知条件都没有改变,故想到将此静态图变化为动态图,

平行移动\(AD\)时,我们看到了两个临界位置,即四边形变化为三角形的两个状态,

其一是四边形变化为三角形\(ABF\),此时应该有\(BF<AB\)

其二是四边形变化为三角形\(ABE\),此时应该有\(BE>AB\)

故动态的边\(AB\)的范围是\(BF<AB<BE\),从而求解。

解答:如图所示,延长\(BA\)\(CD\)交于\(E\),过\(C\)\(CF//AD\)\(AB\)\(F\),则\(BF<AB<BE\)

在等腰三角形\(CFB\)中,\(\angle FCB=30^{\circ}\)\(CF=BC=2\),由余弦定理得到\(BF=\sqrt{6}-\sqrt{2}\)

在等腰三角形\(ECB\)中,\(\angle CEB=30^{\circ}\)\(\angle ECB=75^{\circ}\)\(BE=CE,BC=2\)

由正弦定理得到\(BE=\sqrt{6}+\sqrt{2}\)

\(\sqrt{6}-\sqrt{2}<AB<\sqrt{6}+\sqrt{2}\)

解后反思引申:

1、求\(CD\)的取值范围;

分析:由上述的动态图可知,\(0<CD<CE=BE=\sqrt{6}+\sqrt{2}\)

2、求\(AD\)的取值范围;

分析:由上述的动态图可知,\(0<AD<CF=BC=2\)

3、求四边形\(ABCD\)的周长的取值范围;

分析:四边形\(ABCD\)的周长介于\(\Delta BCF\)的周长和\(\Delta BCE\)的周长之间,

故其取值范围是\((4+\sqrt{6}-\sqrt{2},2(\sqrt{6}+\sqrt{2})+2)\)

4、求四边形\(ABCD\)的面积的取值范围;

分析:四边形\(ABCD\)的面积介于\(\Delta BCF\)的面积和\(\Delta BCE\)的面积之间,

\(S_{\Delta BCF}=\cfrac{1}{2}\times 2\times 2\times sin30^{\circ}=1\)

\(S_{\Delta BCE}=\cfrac{1}{2}\times (\sqrt{6}+\sqrt{2})\times (\sqrt{6}+\sqrt{2})\times sin30^{\circ}=2+\sqrt{3}\)

故其取值范围是\((1,2+\sqrt{3})\)

【2017\(\cdot\)广东汕头一模】【求面积的最大值】已知\(\Delta ABC\)的内角\(A,B,C\)的对边分别是\(a,b,c\),且满足\(b=c\)\(\cfrac{b}{a}=\cfrac{1-cosB}{cosA}\),若点\(O\)\(\Delta ABC\)外的一点,\(\angle AOB=\theta(0<\theta<\pi)\)\(OA=2\)\(OB=1\),则四边形\(OACB\)面积的最大值是【】

$A.\cfrac{4+5\sqrt{3}}{4}$ $B.\cfrac{8+5\sqrt{3}}{4}$ $C.3$ $D.\cfrac{4+5\sqrt{3}}{4}$

分析:由\(\cfrac{b}{a}=\cfrac{sinB}{sinA}=\cfrac{1-cosB}{cosA}\)

得到\(sinBcosA+cosBsinA=sinA\),即\(sin(A+B)=sinA\)

\(sinC=sinA\),即\(A=C\)

\(a=b=c\),为等边三角形。

\(\Delta AOB\)中,\(AB^2=2^2+1^2-2\cdot 2\cdot 1\cdot cos\theta=5-4cos\theta\)

\(S_{OACB}=S_{\Delta AOB}+S_{\Delta ABC}\)

\(=\cfrac{1}{2}\cdot 2\cdot 1\cdot sin\theta+\cfrac{\sqrt{3}}{4}\cdot AB^2\)

\(=sin\theta+\cfrac{\sqrt{3}}{4}(5-4cos\theta)=2sin(\theta-\cfrac{\pi}{3})+\cfrac{5\sqrt{3}}{4}\)

\(\theta-\cfrac{\pi}{3}=\cfrac{\pi}{2}\)时,即\(\theta=\cfrac{5\pi}{6}\in (0,\pi)\)时,四边形的面积有最大值,

\(S_{max}=2+\cfrac{5\sqrt{3}}{4}=\cfrac{8+5\sqrt{3}}{4}\),故选\(B\)

【2017\(\cdot\)皖北协作区3月联考】【求取值范围】如图,\(\angle BAC=\cfrac{2\pi}{3}\)\(P\)\(\angle BAC\)内部一点,过点\(P\)的直线与\(\angle BAC\)的两边交于点\(B、C\),且\(PA\perp AC\)\(AP=\sqrt{3}\)

(1)若\(AB=3\),求\(PC\)

分析:在\(\Delta ABP\)中,\(\angle BAP=30^{\circ}\)\(AB=3\)\(AP=\sqrt{3}\)

由余弦定理得到\(BP=\sqrt{3}\),故\(\angle BAP=\angle PBA=30^{\circ}\)

\(\angle APC=60^{\circ}\),在\(Rt\Delta APC\)中,可得\(PC=2\sqrt{3}\)

(2)求\(\cfrac{1}{PB}+\cfrac{1}{PC}\)的取值范围。

分析:设\(\angle PBA=\theta\),则\(\theta\in (0,\cfrac{\pi}{3})\)

(说明:当过点\(P\)的直线和\(AB\)平行时,\(\theta=0\);当过点\(P\)的直线和\(AC\)平行时,\(\theta=\cfrac{\pi}{3}\))

\(\Delta ABP\)中,\(\angle BAP=30^{\circ}\)\(\angle PBA=\theta\)\(AP=\sqrt{3}\)

故由正弦定理得到\(\cfrac{PB}{sin30^{\circ}}=\cfrac{\sqrt{3}}{sin\theta}\),即\(PB=\cfrac{\cfrac{\sqrt{3}}{2}}{sin\theta}\)

\(Rt\Delta APC\)中,\(\angle CPA=\theta+\cfrac{\pi}{6}\)\(PC=\cfrac{\sqrt{3}}{cos(\theta+\cfrac{\pi}{6})}\)

\(\cfrac{1}{PB}+\cfrac{1}{PC}=\cfrac{2sin\theta}{\sqrt{3}}+\cfrac{cos(\theta+\cfrac{\pi}{6})}{\sqrt{3}}\)

\(=\cfrac{1}{\sqrt{3}}(\cfrac{3}{2}sin\theta+\cfrac{\sqrt{3}}{2}cos\theta)\)

\(=sin(\theta+\cfrac{\pi}{6})\),且\(\theta\in (0,\cfrac{\pi}{3})\)

\(\cfrac{1}{2}<sin(\theta+\cfrac{\pi}{6})<1\)

函数\(f(x)=2cos(\omega x+\phi)(\omega\neq 0)\)对任意\(x\)都有\(f(\cfrac{\pi}{4}+x)=f(\cfrac{\pi}{4}-x)\)成立,则\(f(\cfrac{\pi}{4})\)的值为【】

$A.2或0$ $B.-2或2$ $C.0$ $D.-2或0$

分析:由任意\(x\)都有\(f(\cfrac{\pi}{4}+x)=f(\cfrac{\pi}{4}-x)\)成立,

可知\(x=\cfrac{\pi}{4}\)为函数的一条对称轴,

而正弦型或余弦型函数在对称轴处必然会取到最值,

\(f(\cfrac{\pi}{4})=\pm 2\),选B。

解后反思:此题目如果不注意函数的性质,往往会想到求\(\omega\)\(\phi\),这样思路就跑偏了。

已知\(\cfrac{\pi}{2}<\beta<\alpha<\cfrac{3\pi}{4}\)\(cos(\alpha-\beta)=\cfrac{12}{13}\)\(sin(\alpha+\beta)=-\cfrac{3}{5}\), 则\(sin\alpha+cos\alpha\)的值为_____。

分析:先由给定的不等式求解\(\alpha\pm \beta\)的范围,以便于求解其余名函数的值,为后续的计算打基础。

\(\cfrac{\pi}{2}<\beta<\alpha<\cfrac{3\pi}{4}\)

得到\(\cfrac{\pi}{2}<\alpha<\cfrac{3\pi}{4}\)\(\cfrac{\pi}{2}<\beta<\cfrac{3\pi}{4}\)

\(\pi<\alpha+\beta<\cfrac{3\pi}{2}\),由\(sin(\alpha+\beta)=-\cfrac{3}{5}\)

得到\(cos(\alpha+\beta)=-\cfrac{4}{5}\)

又由\(\cfrac{\pi}{2}<\alpha<\cfrac{3\pi}{4}\)\(-\cfrac{3\pi}{4}<-\beta<-\cfrac{\pi}{2}\),及\(\alpha-\beta>0\)

得到\(0<\alpha-\beta<\cfrac{\pi}{4}\),由\(cos(\alpha-\beta)=\cfrac{12}{13}\)

得到\(sin(\alpha-\beta)=\cfrac{5}{13}\)

\(sin2\alpha=sin[(\alpha+\beta)+(\alpha-\beta)]\)

\(=sin(\alpha+\beta)cos(\alpha-\beta)+cos(\alpha+\beta)sin(\alpha-\beta)=-\cfrac{56}{65}\)

\((sin\alpha+cos\alpha)^2=1+sin2\alpha=\cfrac{9}{65}\)

又由于\(\cfrac{\pi}{2}<\beta<\alpha<\cfrac{3\pi}{4}\),借助三角函数线可知

则有\(sin\alpha+cos\alpha>0\)

\(sin\alpha+cos\alpha=\sqrt{\cfrac{9}{65}}=\cfrac{3\sqrt{65}}{65}\)

【2018高考一卷第16题】求\(f(x)=2sinx+sin2x\)的最小值。

法1:\(f'(x)=2cosx+2cos2x=2cosx+2(2cos^2x-1)\)

\(=4cos^2x+2cosx-2=(2cosx+2)(2cosx-1)\)

\(=4(cosx+1)(cosx-\cfrac{1}{2})\)

注意到\(cosx+1\ge 0\)恒成立,故

\(f'(x)>0\)得到,\(cosx>\cfrac{1}{2}\),令\(f'(x)<0\)得到,\(cosx<\cfrac{1}{2}\)

\(x\in [2k\pi-\cfrac{5\pi}{3},2k\pi-\cfrac{\pi}{3}](k\in Z)\)时,函数\(f(x)\)单调递减;

\(x\in [2k\pi-\cfrac{\pi}{3},2k\pi+\cfrac{\pi}{3}](k\in Z)\)时,函数\(f(x)\)单调递增;

故当\(x=2k\pi-\cfrac{\pi}{3}(k\in Z)\)时,\(f(x)_{min}=f(2k\pi-\cfrac{\pi}{3})=-\cfrac{3\sqrt{3}}{2}\)

法2:待后补充,比如图像法等。

【2019届高三理科数学课时作业用题】在斜三角形\(ABC\)中,\(sinA=-\sqrt{2}cosBcosC\),且\(tanBtanC=1-\sqrt{2}\),则角\(A\)的大小为【】

$A.\cfrac{\pi}{3}$ $B.\cfrac{\pi}{2}$ $C.\cfrac{\pi}{4}$ $D.\cfrac{3\pi}{4}$

法1分析:由\(sinA=sin(B+C)=sinBcosC+cosBsinC=-\sqrt{2}cosBcosC\)

\(\cfrac{sinBcosC+cosBsinC}{cosBcosC}=tanB+tanC=-\sqrt{2}\)

又由于\(tanBtanC=1-\sqrt{2}\),故\(-tanA=tan(B+C)=\cfrac{tanB+tanC}{1-tanBtanC}\)

\(-tanA=\cfrac{-\sqrt{2}}{1-(1-\sqrt{2})}=-1\),故\(tanA=1\),又\(A\in (0,\pi)\)

\(A=\cfrac{\pi}{4}\),故选\(A\)

法2分析:由\(cos(B+C)=cosBcosC-sinBsinC=-cosA\)

\(cosBcosC=sinBsinC-cosA\),两边同乘以\((-\sqrt{2})\),得到

\(-\sqrt{2}cosBcosC=\sqrt{2}sinBsinC+\sqrt{2}cosA\),即\(\sqrt{2}sinBsinC+\sqrt{2}cosA=sinA\)

\(sinBsinC=\cfrac{\sqrt{2}cosA-sinA}{\sqrt{2}}\)①,

\(cosBcosC=\cfrac{sinA}{-\sqrt{2}}=-\cfrac{\sqrt{2}}{2}sinA\)②,

由①/②得到,\(tanB\cdot tanC=\cfrac{\frac{\sqrt{2}cosA-sinA}{\sqrt{2}}}{-\cfrac{\sqrt{2}}{2}sinA}=1-\sqrt{2}\)

化简得到\(sinA=cosA\),即\(tanA=1\),由\(A\in(0,\pi)\)

故得到\(A=\cfrac{\pi}{4}\),故选\(A\)

【2016天津高考文科第8题】已知\(f(x)=sin^2\cfrac{\omega x}{2}+\cfrac{1}{2}sin\omega x-\cfrac{1}{2}(\omega>0)\)\(x\in R\),若\(f(x)\)在区间\((\pi,2\pi)\)内没有零点,则\(\omega\)的取值范围是【D】

$A.(0,\cfrac{1}{8}]$ $B.(0,\cfrac{1}{4}]\cup [\cfrac{5}{8},1)$ $C.(0,\cfrac{5}{8}]$ $D.(0,\cfrac{1}{8}]\cup [\cfrac{1}{4},\cfrac{5}{8}]$

分析:\(f(x)=\cfrac{1-cos\omega x}{2}+\cfrac{1}{2}sin\omega x-\cfrac{1}{2}=\cfrac{1}{2}(sin\omega x-cos\omega x)\)

\(=\cfrac{\sqrt{2}}{2}sin(\omega x-\cfrac{\pi}{4})\)

法1:补集法,从数的角度入手分析,假设\(f(x)\)在区间\((\pi,2\pi)\)内有零点\(x_0\),使得\(f(x)=\cfrac{\sqrt{2}}{2}sin(\omega x_0-\cfrac{\pi}{4})=0\)

\(\omega x_0-\cfrac{\pi}{4}=k\pi(k\in Z)\),即\(x_0=\cfrac{k\pi}{\omega}+\cfrac{\pi}{4\omega}\)

\(x_0=\cfrac{(4k+1)\pi}{4\omega}\),又\(\pi<x_0<2\pi\)

\(\pi<\cfrac{4k+1}{4\omega}<2\pi(k\in Z)\),即\(\left\{\begin{array}{l}{4\omega<4k+1}\\{8\omega>4k+1}\end{array}\right.\)

由于\(\omega>0\),故给\(k\)赋值从\(k=0\)开始,

①当\(k=0\)时,\(\left\{\begin{array}{l}{4\omega<1}\\{8\omega>1}\end{array}\right.\),即\(\cfrac{1}{8}<\omega<\cfrac{1}{4}\)

②当\(k=1\)时,\(\left\{\begin{array}{l}{4\omega<4+1}\\{8\omega>4+1}\end{array}\right.\),即\(\cfrac{5}{8}<\omega<\cfrac{5}{4}\)

③当\(k=2\)时,\(\left\{\begin{array}{l}{4\omega<8+1}\\{8\omega>8+1}\end{array}\right.\),即\(\cfrac{9}{8}<\omega<\cfrac{9}{4}\)

④当\(k=3\)时,\(\left\{\begin{array}{l}{4\omega<12+1}\\{8\omega>12+1}\end{array}\right.\),即\(\cfrac{13}{8}<\omega<\cfrac{13}{4}\)

⑤当\(k=4,\cdots\)时,\(\cdots\)

以上情形取并集,得到当函数\(f(x)\)在区间\((\pi,2\pi)\)内有零点\(x_0\)时,\(\omega\)的取值范围是\((\cfrac{1}{8},\cfrac{1}{4})\cup(\cfrac{5}{8},+\infty)\)

故函数\(f(x)\)在区间\((\pi,2\pi)\)内没有零点时,\(\omega\)的取值范围是\((0,\cfrac{1}{8}]\cup[\cfrac{1}{4},\cfrac{5}{8}]\),故选\(D\)

法2:直接法,从数的角度入手分析,函数\(f(x)\)在区间\((\pi,2\pi)\)内没有零点,则\(sin(\omega x_0-\cfrac{\pi}{4})=0\)在区间\((\pi,2\pi)\)内无解,

\(k\pi<\omega x-\cfrac{\pi}{4}<k\pi+\pi(k\in Z)\),即\(k\pi+\cfrac{\pi}{4}<\omega x<k\pi+\cfrac{5\pi}{4}(k\in Z)\)

\(\cfrac{k\pi}{\omega}+\cfrac{\pi}{4\omega}<x_0<\cfrac{k\pi}{\omega}+\cfrac{5\pi}{4\omega}\)

\(\cfrac{(4k+1)\pi}{4\omega}<x<\cfrac{(4k+5)\pi}{4\omega}\)恒成立,由于\(x\in (\pi,2\pi)\)

\(\cfrac{(4k+1)\pi}{4\omega}\leq \pi\)\(2\pi\leq \cfrac{(4k+5)\pi}{4\omega}\)

\(\left\{\begin{array}{l}{4\omega\ge 4k+1}\\{8\omega\leq 4k+5}\end{array}\right.\)

①当\(k=-1\)时,\(4\omega\ge -3\)\(8\omega \leq 1\),解得\(0<\omega\leq \cfrac{1}{8}\)

②当\(k=0\)时,\(4\omega\ge 1\)\(8\omega \leq 5\),解得\(\cfrac{1}{4}\leq \omega\leq \cfrac{5}{8}\)

③当\(k=1\)时,\(4\omega\ge 5\)\(8\omega \leq 9\),解得\(\cfrac{5}{4}\leq \omega\leq \cfrac{9}{8}\),实质为空集;

④当\(k=2\)时,\(4\omega\ge 9\)\(8\omega \leq 13\),解得\(\cfrac{9}{4}\leq \omega\leq \cfrac{13}{8}\),实质为空集;

⑤当\(k=3,\cdots\)时,等等,解集都是空集;

综上所述,函数\(f(x)\)在区间\((\pi,2\pi)\)内没有零点时,\(\omega\)的取值范围是\((0,\cfrac{1}{8}]\cup[\cfrac{1}{4},\cfrac{5}{8}]\),故选\(D\)

法3:高考解法,从数的角度入手分析,接上述解法,得到

\(sin(\omega x_0-\cfrac{\pi}{4})=0\)在区间\((\pi,2\pi)\)内无解,

\(x=\cfrac{k\pi+\frac{\pi}{4}}{\omega}\not\in (\pi,2\pi)\)

\(\omega \not\in (\cfrac{1}{8},\cfrac{1}{4})\cup (\cfrac{5}{8},\cfrac{5}{4})\cup (\cfrac{9}{8},\cfrac{9}{4})\cup\cdots = (\cfrac{1}{8},\cfrac{1}{4})\cup (\cfrac{5}{8},+\infty)\)

由于函数\(f(x)\)在区间\((\pi,2\pi)\)内没有零点,\(\omega\)的取值范围是\((0,\cfrac{1}{8}]\cup[\cfrac{1}{4},\cfrac{5}{8}]\),故选\(D\)

法4:如下图所示,从形的角度入手分析:

要使得函数在\((\pi,2\pi)\)内没有零点,则有以下情形成立:

\(2\pi\leq \cfrac{\pi}{4\omega}\),解得\(0<\omega\leq \cfrac{1}{8}\)

\(\left\{ \begin{array}{l}{ \cfrac{\pi}{4\omega}\leq \pi }\\ {2\pi \leq \cfrac{5\pi}{4\omega}}\end{array}\right.\) ,解得$ \cfrac{1}{4}<\omega \leq \cfrac{5}{8}$;

\(\left\{\begin{array}{l}{\cfrac{5\pi}{4\omega}\leq \pi}\\{2\pi\leq\cfrac{9\pi}{4\omega}} \end{array}\right.\),解得\(\cfrac{5}{4}<\omega\leq \cfrac{9}{8}\);即\(\omega\in \varnothing\)

\(\left\{\begin{array}{l}{\cfrac{9\pi}{4\omega}\leq \pi}\\{2\pi\leq\cfrac{13\pi}{4\omega}} \end{array}\right.\),解得\(\cfrac{9}{4}<\omega\leq \cfrac{13}{8}\);即\(\omega\in \varnothing\)

\(\cdots\),解得\(\omega\in \varnothing\)

综上所述,\(\omega\)的取值范围是\((0,\cfrac{1}{8}]\cup[\cfrac{1}{4},\cfrac{5}{8}]\),故选\(D\)

【2019届高三理科数学题】若函数\(f(x)=2sin\omega x(\omega>0)\)在区间\((0,2\pi)\)上恰有两个极大值和一个极小值,则\(\omega\)的取值范围是【A】

$A.(\cfrac{5}{4},\cfrac{7}{4}]$ $B.(\cfrac{3}{4},\cfrac{5}{4}]$ $C.(1,\cfrac{5}{4}]$ $D.(\cfrac{3}{4},\cfrac{5}{4}]$

分析:由题目可知,\(\left\{\begin{array}{l}{\cfrac{5}{4}\cdot T<2\pi ①}\\{2\pi\leq \cfrac{7}{4}\cdot T②}\end{array}\right.\)

注意由于是在开区间\((0,2\pi)\)上,故①没有等号,而②有等号;

\(\left\{\begin{array}{l}{\cfrac{5}{4}\cdot \cfrac{2\pi}{\omega}<2\pi }\\{2\pi\leq \cfrac{7}{4}\cdot \cfrac{2\pi}{\omega}}\end{array}\right.\)

解得\(\cfrac{5}{4}<\omega\leq \cfrac{7}{4}\)。故选\(A\)

posted @ 2018-12-18 18:24  静雅斋数学  阅读(675)  评论(0编辑  收藏  举报
您已经努力一段时间了
活动活动喝杯咖啡吧
                  ----静雅斋