摘要: 在机器学习中,决策树算法因其简单易懂、可解释性强而被广泛应用。 然而,现实世界中的数据往往复杂多变,尤其是连续值和缺失值的存在,给决策树的构建带来了诸多挑战。 连续值(如年龄、收入)无法直接用于决策树的离散分裂点,需要转化为“离散区间”。 缺失值(如用户未填写的问卷项)可能导致信息损失或模型偏差。 阅读全文
posted @ 2025-04-11 11:52 wang_yb 阅读(413) 评论(0) 推荐(0)