随笔分类 - databook
数据采集
    
摘要:Matplotlib 库是一个用于数据可视化和绘图的 Python 库。 它提供了大量的函数和类,可以帮助用户轻松地创建各种类型的图表,包括直方图、箱形图、散点图、饼图、条形图和密度图等。 本系列具体内容包括: 画布 画布是其他所有的元素的载体,可以说是最重要,也是最容易被忽视的元素。 绘制图形之前
        阅读全文
                
摘要:如果分析的数据与地域相关,那么,把分析结果结合地图一起展示的话,会让可视化的效果得到极大的提升。 比如,分析各省GDP数据,人口数据,用柱状图,饼图之类的虽然都可以展示分析结果,不过,如果能在全国的地图上展示各省的分析结果的话,会让人留下更加深刻的印象。 将数据的分析结果展示在地图上,难点在于: 如
        阅读全文
                
摘要:matplotlib 在1.0版本之前其实是不支持3D图形绘制的。 后来的版本中,matplotlib加入了3D图形的支持,不仅仅是为了使数据的展示更加生动和有趣。更重要的是,由于多了一个维度,扩展了其展示数据分布和关系的能力,可以一次从三个维度来比较数据。 下面介绍在matplotlib中绘制各类
        阅读全文
                
摘要:matplotlib的动画一直是一个强大但使用频率不高的功能,究其原因,一方面展示动画需要一定的媒介,没有图形和文字展示方便;二来大家更关心的是分析结果的最终图表,图表的动态展示则没有那么重要。 不过,随着短视频的兴起,在短视频平台上展示动画变得非常容易,所以,我们发现有越来越多的数据分析动画(比如
        阅读全文
                
摘要:除了绘制各类分析图形(比如柱状图,折线图,饼图等等)以外,matplotlib 也可以在画布上任意绘制各类几何图形。这对于计算机图形学、几何算法和计算机辅助设计等领域非常重要。 matplitlib 中的 patches 类提供了丰富的几何对象,本篇抛砖引玉,介绍其中几种常用的几何图形绘制方法。 其
        阅读全文
                
摘要:Matplotlib 中有一个很有趣的手绘风格。如果不是特别严肃的分析报告,使用这个风格能给枯燥的数据分析图表带来一些活泼的感觉。 使用手绘风格非常简单,本篇主要手绘风格的效果以及如何配置中文的支持。 1. 中文支持 Matplotlib 的手绘风格默认是不支持中文的,中文在图形中会显示成方格子。如
        阅读全文
                
摘要:Matplotlib库 由于诞生的比较早,所以其默认的显示样式很难符合现在的审美,这也是它经常为人诟病的地方。 不过,经过版本更迭之后,现在 Matplotlib 已经内置了很多样式表,通过使用不同的样式表,可以整体改变绘制图形的风格,不用再调整一个个显示参数。 1. 样式表的使用 1.1. 所有内
        阅读全文
                
摘要:Matplotlib 提供了大量配置参数,这些参数可以但不限于让我们从整体上调整通过 Matplotlib 绘制的图形样式,这里面的参数还有很多是功能性的,和其他工具结合时需要用的配置。 通过plt.rcParams,可以查看所有的配置信息: import matplotlib.pyplot as 
        阅读全文
                
摘要:Matplotlib 文本和标注可以为数据和图形之间提供额外的信息,帮助观察者更好地理解数据和图形的含义。 文本用于在图形中添加注释或提供更详细的信息,以帮助观察者理解图形的含义。标注则是一种更加细粒度的文本信息,可以被用来为特定的数据点或区域提供更详细的信息。 本篇通过示例依次介绍文本和标注的常用
        阅读全文
                
摘要:Matplotlib 中的图例是帮助观察者理解图像数据的重要工具。图例通常包含在图像中,用于解释不同的颜色、形状、标签和其他元素。 1. 主要参数 当不设置图例的参数时,默认的图例是这样的。 import numpy as np import matplotlib.pyplot as plt x =
        阅读全文
                
摘要:Matplotlib中刻度是用于在绘图中表示数据大小的工具。 刻度是坐标轴上的数字或标签,用于指示数据的大小或值,通常以整数或小数表示,具体取决于坐标轴的类型和限制。 1. 主次刻度 默认的绘制时,坐标轴只有默认的主要刻度,如下所示: from matplotlib.ticker import Mu
        阅读全文
                
摘要:Matplotlib的坐标轴是用于在绘图中表示数据的位置的工具。 坐标轴是图像中的水平和垂直线,它们通常表示为 x 轴和 y 轴。坐标轴的作用是帮助观察者了解图像中数据的位置和大小,通常标有数字或标签,以指示特定的值在图像中的位置。 1. 坐标轴范围 Matplotlib绘制图形时,会自动根据X,Y
        阅读全文
                
摘要:使用Matplotlib对分析结果可视化时,比较各类分析结果是常见的场景。在这类场景之下,将多个分析结果绘制在一张图上,可以帮助用户方便地组合和分析多个数据集,提高数据可视化的效率和准确性。 本篇介绍Matplotlib绘制子图的常用方式和技巧。 1. 添加子图的方式 添加子图主要有两种方式,一种是
        阅读全文
                
摘要:Matplotlib 库是一个用于数据可视化和绘图的 Python 库。它提供了大量的函数和类,可以帮助用户轻松地创建各种类型的图表,包括直方图、箱形图、散点图、饼图、条形图和密度图等。 使用 Matplotlib 的过程中,遇到的难点并不在于绘制各类的图形,因为每种图形都有其对应的API。难点在于
        阅读全文
                
摘要:pandas小技巧系列是介绍的是使用pandas分析数据时,最常用的一些操作技巧。 具体包括: 创建测试数据 学习pandas的过程中,为了尝试pandas提供的各类功能强大的函数,常常需要花费很多时间去创造测试数据。 本篇介绍如何快速的创建测试数据。 读取多个文件 日常分析数据时,只有单一数据文件
        阅读全文
                
摘要:最近github上发现了一个库(plottable),可以用简单的方式就设置出花哨的 DataFrame 样式。 github上的地址:https://github.com/znstrider/plottable 1. 安装 通过 pip 安装: pip install plottable 2. 行
        阅读全文
                
摘要:上一篇介绍了DataFrame的显示参数,主要是对DataFrame中值进行调整。 本篇介绍DataFrame的显示样式的调整,显示样式主要是对表格本身的调整,比如颜色,通过颜色可以突出显示重要的值,观察数据时可以更加高效的获取主要信息。 下面介绍一些针对单个数据和批量数据的样式调整方式,让Data
        阅读全文
                
摘要:我们在jupyter notebook中使用pandas显示DataFrame的数据时,由于屏幕大小,或者数据量大小的原因,常常会觉得显示出来的表格不是特别符合预期。 这时,就需要调整pandas显示DataFrame的方式。pandas为我们提供了很多调整显示方式的参数,具体参见文末附录中的链接。
        阅读全文
                
摘要:category类型在pandas基础系列中有一篇介绍数据类型的文章中已经介绍过。category类型并不是python中的类型,是pandas特有的类型。 category类型的优势那篇文章已经介绍过,当时只是介绍了如何将某个列的数据转换成category类型,以及转换之后给程序性能上带来的好处。
        阅读全文
                
摘要:这次介绍的小技巧不是统计,而是把统计结果作为新列和原来的数据放在一起。pandas的各种统计功能之前已经介绍了不少,但是每次都是统计结果归统计结果,原始数据归原始数据,没有把它们合并在一个数据集中来观察。 下面通过两个场景示例来演示如果把统计值作为新列的数据。 1. 成绩统计的场景 成绩统计及其类似
        阅读全文
                
 
                    
                     
                    
                 
                    
                
 
         浙公网安备 33010602011771号
浙公网安备 33010602011771号