第六次作业
| 这个作业属于哪个课程 | https://edu.cnblogs.com/campus/qdu/DS2020/<> |
|---|---|
| 这个作业要求在哪里 | https://edu.cnblogs.com/campus/qdu/DS2020/homework/11430 |
| 这个作业的目标 | <熟练掌握有关二叉树的程序> |
| 学号 | <2018204191> |
| 一、实验目的 | |
| 1、掌握二叉树的基本特性 | |
| 2、掌握二叉树的先序、中序、后序的递归遍历算法 | |
| 3、理解二叉树的先序、中序、后序的非递归遍历算法 | |
| 4、通过求二叉树的深度、叶子结点数和层序遍历等算法,理解二叉树的基本特性 |
二、实验预习
说明以下概念
1、二叉树:二叉树(binary tree)是指树中节点的度不大于2的有序树,它是一种最简单且最重要的树。二叉树的递归定义为:二叉树是一棵空树,或者是一棵由一个根节点和两棵互不相交的,分别称作根的左子树和右子树组成的非空树;左子树和右子树又同样都是二叉树。
2、递归遍历:二叉树的定义是递归的,一棵非空的二叉树是由根结点、左子树、右子树这三个基本部分组成的,因此,遍历一棵非空二叉树的问题可分解为三个子问题:访问根节点;遍历左子树;遍历右子树。
3、非递归遍历:树的遍历若采用非递归的方法,就要采用栈去模拟实现。
4、层序遍历:除了先序遍历、中序遍历、后序遍历外,还可以对二叉树进行层序遍历。设二叉树的根节点所在层数为1,层序遍历就是从所在二叉树的根节点出发,首先访问第一层的树根节点,然后从左到右访问第2层上的节点,接着是第三层的节点,以此类推,自上而下,自左至右逐层访问树的结点的过程就是层序遍历。
三、实验内容和要求
1、阅读并运行下面程序,根据输入写出运行结果,并画出二叉树的形态。
#include<stdio.h>
#include<malloc.h>
#define MAX 20
typedef struct BTNode{ /*节点结构声明*/
char data ; /*节点数据*/
struct BTNode *lchild;
struct BTNode *rchild ; /*指针*/
}*BiTree;
void createBiTree(BiTree *t){ /* 先序遍历创建二叉树*/
char s;
BiTree q;
printf("\nplease input data:(exit for #)");
s=getche();
if(s=='#'){*t=NULL; return;}
q=(BiTree)malloc(sizeof(struct BTNode));
if(q==NULL){printf("Memory alloc failure!"); exit(0);}
q->data=s;
*t=q;
createBiTree(&q->lchild); /*递归建立左子树*/
createBiTree(&q->rchild); /*递归建立右子树*/
}
void PreOrder(BiTree p){ /* 先序遍历二叉树*/
if ( p!= NULL ) {
printf("%c", p->data);
PreOrder( p->lchild ) ;
PreOrder( p->rchild) ;
}
}
void InOrder(BiTree p){ /* 中序遍历二叉树*/
if( p!= NULL ) {
InOrder( p->lchild ) ;
printf("%c", p->data);
InOrder( p->rchild) ;
}
}
void PostOrder(BiTree p){ /* 后序遍历二叉树*/
if ( p!= NULL ) {
PostOrder( p->lchild ) ;
PostOrder( p->rchild) ;
printf("%c", p->data);
}
}
void Preorder_n(BiTree p){ /*先序遍历的非递归算法*/
BiTree stack[MAX],q;
int top=0,i;
for(i=0;i<MAX;i++) stack[i]=NULL;/*初始化栈*/
q=p;
while(q!=NULL){
printf("%c",q->data);
if(q->rchild!=NULL) stack[top++]=q->rchild;
if(q->lchild!=NULL) q=q->lchild;
else
if(top>0) q=stack[--top];
else q=NULL;
}
}
void release(BiTree t){ /*释放二叉树空间*/
if(t!=NULL){
release(t->lchild);
release(t->rchild);
free(t);
}
}
int main(){
BiTree t=NULL;
createBiTree(&t);
printf("\n\nPreOrder the tree is:");
PreOrder(t);
printf("\n\nInOrder the tree is:");
InOrder(t);
printf("\n\nPostOrder the tree is:");
PostOrder(t);
printf("\n\n先序遍历序列(非递归):");
Preorder_n(t);
release(t);
return 0;
}
运行程序
输入:
ABC##DE#G##F###
运行结果:
2、在上题中补充求二叉树中求结点总数算法(提示:可在某种遍历过程中统计遍历的结点数),并在主函数中补充相应的调用验证正确性。
算法代码:
#include<stdio.h>
#include<malloc.h>
#include<iostream>
#include<conio.h>
#define MAX 20
typedef struct BTNode{ /*节点结构声明*/
char data ; /*节点数据*/
struct BTNode *lchild;
struct BTNode *rchild ; /*指针*/
}*BiTree;
void createBiTree(BiTree *t){ /* 先序遍历创建二叉树*/
char s;
BiTree q;
printf("\nplease input data:(exit for #)");
s=getche();
if(s=='#'){*t=NULL; return;}
q=(BiTree)malloc(sizeof(struct BTNode));
if(q==NULL){printf("Memory alloc failure!"); exit(0);}
q->data=s;
*t=q;
createBiTree(&q->lchild); /*递归建立左子树*/
createBiTree(&q->rchild); /*递归建立右子树*/
}
void PreOrder(BiTree p){ /* 先序遍历二叉树*/
if ( p!= NULL ) {
printf("%c", p->data);
PreOrder( p->lchild ) ;
PreOrder( p->rchild) ;
}
}
void InOrder(BiTree p){ /* 中序遍历二叉树*/
if( p!= NULL ) {
InOrder( p->lchild ) ;
printf("%c", p->data);
InOrder( p->rchild) ;
}
}
void PostOrder(BiTree p){ /* 后序遍历二叉树*/
if ( p!= NULL ) {
PostOrder( p->lchild ) ;
PostOrder( p->rchild) ;
printf("%c", p->data);
}
}
void Preorder_n(BiTree p){ /*先序遍历的非递归算法*/
BiTree stack[MAX],q;
int top=0,i;
for(i=0;i<MAX;i++) stack[i]=NULL;/*初始化栈*/
q=p;
while(q!=NULL){
printf("%c",q->data);
if(q->rchild!=NULL) stack[top++]=q->rchild;
if(q->lchild!=NULL) q=q->lchild;
else
if(top>0) q=stack[--top];
else q=NULL;
}
}
void release(BiTree t){ /*释放二叉树空间*/
if(t!=NULL){
release(t->lchild);
release(t->rchild);
free(t);
}
}
int PreOrder_num(BiTree p) {
int j=0;
BiTree stack[MAX],q;
int top=0,i;
for(i=0; i<MAX; i++) stack[i]=NULL; /*初始化栈*/
q=p;
while(q!=NULL) {
j++;
if(q->rchild!=NULL) stack[top++]=q->rchild;
if(q->lchild!=NULL) q=q->lchild;
else
if(top>0) q=stack[--top];
else q=NULL;
}
return j;
}
int main(){
BiTree t=NULL;
createBiTree(&t);
printf("\n\nPreOrder the tree is:");
PreOrder(t);
printf("\n\nInOrder the tree is:");
InOrder(t);
printf("\n\nPostOrder the tree is:");
PostOrder(t);
printf("\n\n先序遍历序列(非递归):");
Preorder_n(t);
printf("\n\n结点总数:");
printf("%d",PreOrder_num(t));
release(t);
return 0;
}
运行结果
3、在上题中补充求二叉树中求叶子结点总数算法(提示:可在某种遍历过程中统计遍历的叶子结点数),并在主函数中补充相应的调用验证正确性。
算法代码:
int num1=0 ,num2=0;
if(p==NULL)
return 0;
else if(p->lchild==NULL&&p->rchild==NULL)
return 1;
else{
num1=LeafNodes(p->lchild) ;
num2=LeafNodes(p->rchild) ;
return (num1+num2);
}
}
int main(){
BiTree t=NULL;
createBiTree(&t);
printf("\n\nPreOrder the tree is:");
PreOrder(t);
printf("\n\nInOrder the tree is:");
InOrder(t);
printf("\n\nPostOrder the tree is:");
PostOrder(t);
printf("\n\n先序遍历序列(非递归):");
Preorder_n(t);
printf("\n\n结点总数:");
printf("%d",PreOrder_num(t));
printf("\n\n叶结点总数:");
printf("%d",LeafNodes(t));
release(t);
return 0;
}
运行结果:
4、在上题中补充求二叉树深度算法,并在主函数中补充相应的调用验证正确性。
算法代码:
int BTNodeDepth(BiTree p) {
int lchilddep,rchilddep;
if(p==NULL)
return 0;
else {
lchilddep=BTNodeDepth(p->lchild);
rchilddep=BTNodeDepth(p->rchild);
return(lchilddep>rchilddep)?(lchilddep+1):(rchilddep+1);
}
}
int main(){
BiTree t=NULL;
createBiTree(&t);
printf("\n\nPreOrder the tree is:");
PreOrder(t);
printf("\n\nInOrder the tree is:");
InOrder(t);
printf("\n\nPostOrder the tree is:");
PostOrder(t);
printf("\n\n先序遍历序列(非递归):");
Preorder_n(t);
printf("\n\n结点总数:");
printf("%d",PreOrder_num(t));
printf("\n\n树的深度:");
printf("%d",BTNodeDepth(t));
release(t);
return 0;
}
运行结果
四、实验小结
了解了二叉树的程序,对二叉树的遍历原理有了一定了解。

浙公网安备 33010602011771号