import torch
import numpy
import torch.nn as nn
import torch.nn.functional as F
from PIL import Image
from torchvision import transforms
import torchvision.models as models
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],#这是imagenet
std=[0.229, 0.224, 0.225])
tran=transforms.Compose([
transforms.Resize((224,224)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
])
im='./1.jpeg'
# im='./2.jpg'
im=Image.open(im)
im=tran(im)
im.unsqueeze_(dim=0)
im=torch.autograd.Variable(im,requires_grad=True)
vgg = models.vgg16()
pre=torch.load('/home/qk/.torch/models/vgg16-397923af.pth')
vgg.load_state_dict(pre)
out=vgg(im)
outnp=out.data[0]
ind=int(numpy.argmax(outnp))
out[0][ind].backward()
grad=im.grad
grad.squeeze_(0)
grad=grad*grad
grad=grad.sum(keepdim=False,dim=0)
grad=torch.sqrt(grad)
rg=torch.max(grad)
grad=grad/rg*255.
#太神奇了,为什么有uint8就能出来激活图,没有就不行!!!!!这要是不搜索一下的话,怎么可能debug出来呢?
# im = Image.fromarray(grad.numpy(),'L') # .eval() tensor->numpy array
im = Image.fromarray(numpy.uint8(grad.numpy()),'L') # .eval() tensor->numpy array
im.save('grey.png')
# input()
from cls import d
print(d[ind])